Research progress on N6-methyladenosine and ferroptosis in childhood combined allergic rhinitis and asthma syndrome

LI Jing-Yi, LI Yu-Jian, LAI Sheng-Lin, KAN Xuan

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (2) : 242-247.

PDF(564 KB)
HTML
PDF(564 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (2) : 242-247. DOI: 10.7499/j.issn.1008-8830.2407062
REVIEW

Research progress on N6-methyladenosine and ferroptosis in childhood combined allergic rhinitis and asthma syndrome

  • LI Jing-Yi, LI Yu-Jian, LAI Sheng-Lin, KAN Xuan
Author information +
History +

Abstract

Combined allergic rhinitis and asthma syndrome (CARAS) is one of the common chronic airway inflammatory diseases in children. With the development of epigenetics, research on CARAS has gradually extended from protein levels to molecular levels, such as transcription and post-transcriptional regulation. N6-methyladenosine (m6A) methylation and ferroptosis have emerged as promising research hotspots in recent years, playing crucial roles in tumors, growth and development, and allergic diseases. This paper aims to summarize the characteristics of m6A and ferroptosis, along with their roles in the onset and progression of CARAS in children, thereby providing new insights and strategies for the diagnosis and treatment of childhood CARAS.

Key words

Combined allergic rhinitis and asthma syndrome / N6-methyladenosine / Ferroptosis / Allergic rhinitis / Allergic asthma / Child

Cite this article

Download Citations
LI Jing-Yi, LI Yu-Jian, LAI Sheng-Lin, KAN Xuan. Research progress on N6-methyladenosine and ferroptosis in childhood combined allergic rhinitis and asthma syndrome[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(2): 242-247 https://doi.org/10.7499/j.issn.1008-8830.2407062

References

1 Sendinc E, Shi Y. RNA m6A methylation across the transcriptome[J]. Mol Cell, 2023, 83(3): 428-441. PMID: 36736310. DOI: 10.1016/j.molcel.2023.01.006.
2 Garbo S, Zwergel C, Battistelli C. m6A RNA methylation and beyond: the epigenetic machinery and potential treatment options[J]. Drug Discov Today, 2021, 26(11): 2559-2574. PMID: 34126238. DOI: 10.1016/j.drudis.2021.06.004.
3 Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. PMID: 33495651. PMCID: PMC8142022. DOI: 10.1038/s41580-020-00324-8.
4 GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease study 2017[J]. Lancet Respir Med, 2020, 8(6): 585-596. PMID: 32526187. PMCID: PMC7284317. DOI: 10.1016/S2213-2600(20)30105-3.
5 Mo BW, Li XM, Li SM, et al. m6A echoes with DNA methylation: coordinated DNA methylation and gene expression data analysis identified critical m6A genes associated with asthma[J]. Gene, 2022, 828: 146457. PMID: 35421547. DOI: 10.1016/j.gene.2022.146457.
6 Tang W, Dong M, Teng F, et al. TMT-based quantitative proteomics reveals suppression of SLC3A2 and ATP1A3 expression contributes to the inhibitory role of acupuncture on airway inflammation in an OVA-induced mouse asthma model[J]. Biomed Pharmacother, 2021, 134: 111001. PMID: 33341053. DOI: 10.1016/j.biopha.2020.111001.
7 Tang H, Li T, Han X, et al. TLR4 antagonist ameliorates combined allergic rhinitis and asthma syndrome (CARAS) by reducing inflammatory monocytes infiltration in mice model[J]. Int Immunopharmacol, 2019, 73: 254-260. PMID: 31121415. DOI: 10.1016/j.intimp.2019.05.021.
8 中国妇幼保健协会儿童变态反应专业委员会, 《中国实用儿科杂志》编辑委员会. 儿童变应性鼻炎-哮喘综合征中西医结合诊治专家共识(2023)[J]. 中国实用儿科杂志, 2023, 38(3): 168-176. DOI: 10.19538/j.ek2023030602.
9 Grossman J. One airway, one disease[J]. Chest, 1997, 111(2 Suppl): 11S-16S. PMID: 9042022. DOI: 10.1378/chest.111.2_supplement.11s.
10 Pawankar R, Canonica G, Holgate S, et al. WAO White Book on Allergy 2011-2012: Executive Summary[EB/OL]. (2012-04-23) [2022-10-16]. http://isir.ru/files/WAO_White_Book-Summary.pdf.
11 Paiva Ferreira LKD, Paiva Ferreira LAM, Monteiro TM, et al. Combined allergic rhinitis and asthma syndrome (CARAS)[J]. Int Immunopharmacol, 2019, 74: 105718. PMID: 31255882. DOI: 10.1016/j.intimp.2019.105718.
12 Niu Y, Zhao X, Wu YS, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function[J]. Genomics Proteomics Bioinformatics, 2013, 11(1): 8-17. PMID: 23453015. PMCID: PMC4357660. DOI: 10.1016/j.gpb.2012.12.002.
13 Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function[J]. Wiley Interdiscip Rev RNA, 2022, 13(2): e1681. PMID: 34227247. PMCID: PMC9286414. DOI: 10.1002/wrna.1681.
14 Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Mol Cell, 2016, 63(2): 306-317. PMID: 27373337. PMCID: PMC4958592. DOI: 10.1016/j.molcel.2016.05.041.
15 Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. PMID: 34648969. DOI: 10.1016/j.phrs.2021.105937.
16 Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domain-containing proteins[J]. Cell Death Discov, 2022, 8(1): 137. PMID: 35351856. PMCID: PMC8964710. DOI: 10.1038/s41420-022-00947-0.
17 Lu SC. S-adenosylmethionine[J]. Int J Biochem Cell Biol, 2000, 32(4): 391-395. PMID: 10762064. DOI: 10.1016/s1357-2725(99)00139-9.
18 Xu Z, Lv B, Qin Y, et al. Emerging roles and mechanism of m6A methylation in cardiometabolic diseases[J]. Cells, 2022, 11(7): 1101. PMID: 35406663. PMCID: PMC8997388. DOI: 10.3390/cells11071101.
19 Liu L, Li H, Hu D, et al. Insights into N6-methyladenosine and programmed cell death in cancer[J]. Mol Cancer, 2022, 21(1): 32. PMID: 35090469. PMCID: PMC8796496. DOI: 10.1186/s12943-022-01508-w.
20 Cavalcanti RFP, Gadelha FAAF, de Jesus TG, et al. Warifteine and methylwarifteine inhibited the type 2 immune response on combined allergic rhinitis and asthma syndrome (CARAS) experimental model through NF-кB pathway[J]. Int Immunopharmacol, 2020, 85: 106616. PMID: 32450529. DOI: 10.1016/j.intimp.2020.106616.
21 Wang Y, Wang J, Yan Z, et al. Microenvironment modulation by key regulators of RNA N6-methyladenosine modification in respiratory allergic diseases[J]. BMC Pulm Med, 2023, 23(1): 210. PMID: 37328853. PMCID: PMC10276419. DOI: 10.1186/s12890-023-02499-0.
22 Fan Y, Yang C, Zhou J, et al. Regulatory effect of glutathione on Treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy[J]. Immunopharmacol Immunotoxicol, 2021, 43(1): 58-67. PMID: 33285073. DOI: 10.1080/08923973.2020.1850762.
23 Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils[J]. J Allergy Clin Immunol, 2010, 125(2 Suppl 2): S73-S80. PMID: 20176269. PMCID: PMC2847274. DOI: 10.1016/j.jaci.2009.11.017.
24 Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191: 1-14. PMID: 29066321. PMCID: PMC5776696. DOI: 10.1016/j.trsl.2017.09.002.
25 Han X, Liu L, Huang S, et al. RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis[J]. Nat Commun, 2023, 14(1): 7328. PMID: 37957139. PMCID: PMC10643624. DOI: 10.1038/s41467-023-43219-w.
26 Dai B, Sun F, Cai X, et al. Significance of RNA N6-methyladenosine regulators in the diagnosis and subtype classification of childhood asthma using the gene expression omnibus database[J]. Front Genet, 2021, 12: 634162. PMID: 33763115. PMCID: PMC7982807. DOI: 10.3389/fgene.2021.634162.
27 Li HB, Tong J, Zhu S, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. PMID: 28792938. PMCID: PMC5729908. DOI: 10.1038/nature23450.
28 Asayama K, Kobayashi T, D'Alessandro-Gabazza CN, et al. Protein S protects against allergic bronchial asthma by modulating Th1/Th2 balance[J]. Allergy, 2020, 75(9): 2267-2278. PMID: 32145080. DOI: 10.1111/all.14261.
29 Wang J, Jian Q, Yan K, et al. m6A-modified miR-143-3p inhibits epithelial mesenchymal transition in bronchial epithelial cells and extracellular matrix production in lung fibroblasts by targeting Smad3[J]. Pulm Pharmacol Ther, 2023, 83: 102251. PMID: 37666296. DOI: 10.1016/j.pupt.2023.102251.
30 Teng F, Tang W, Wuniqiemu T, et al. N6-methyladenosine methylomic landscape of lung tissues in murine acute allergic asthma[J]. Front Immunol, 2021, 12: 740571. PMID: 34737744. PMCID: PMC8560743. DOI: 10.3389/fimmu.2021.740571.
31 Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. PMID: 32015325. PMCID: PMC6997353. DOI: 10.1038/s41419-020-2298-2.
32 Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. PMID: 35803244. PMCID: PMC9273022. DOI: 10.1016/j.cell.2022.06.003.
33 Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. PMID: 33268902. PMCID: PMC8026611. DOI: 10.1038/s41422-020-00441-1.
34 Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. PMID: 33514910. DOI: 10.1038/s41571-020-00462-0.
35 Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation[J]. Biomed Pharmacother, 2020, 127: 110108. PMID: 32234642. DOI: 10.1016/j.biopha.2020.110108.
36 Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Adv Mater, 2019, 31(51): e1904197. PMID: 31595562. DOI: 10.1002/adma.201904197.
37 Yu S, Jia J, Zheng J, et al. Recent progress of ferroptosis in lung diseases[J]. Front Cell Dev Biol, 2021, 9: 789517. PMID: 34869391. PMCID: PMC8635032. DOI: 10.3389/fcell.2021.789517.
38 Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation[J]. Cell Death Dis, 2021, 12(11): 1009. PMID: 34707088. PMCID: PMC8551323. DOI: 10.1038/s41419-021-04284-5.
39 Gu W, Hou T, Zhou H, et al. Ferroptosis is involved in PM2.5-induced acute nasal epithelial injury via AMPK-mediated autophagy[J]. Int Immunopharmacol, 2023, 115: 109658. PMID: 36608444. DOI: 10.1016/j.intimp.2022.109658.
40 Nakamura Y, Fuse Y, Komiyama S, et al. Dietary iodine attenuates allergic rhinitis by inducing ferroptosis in activated B cells[J]. Sci Rep, 2023, 13(1): 5398. PMID: 37012320. PMCID: PMC10070403. DOI: 10.1038/s41598-023-32552-1.
41 Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022, 132(1): e151685. PMID: 34762602. PMCID: PMC8718153. DOI: 10.1172/JCI151685.
42 Wenzel SE, Tyurina YY, Zhao J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3): 628-641.e26. PMID: 29053969. PMCID: PMC5683852. DOI: 10.1016/j.cell.2017.09.044.
43 Han F, Li S, Yang Y, et al. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis[J]. Bioengineered, 2021, 12(1): 5279-5288. PMID: 34402724. PMCID: PMC8806540. DOI: 10.1080/21655979.2021.1964158.
44 Yu T, Yu Y, Ma Y, et al. Inhibition of CREB promotes glucocorticoids action on airway inflammation in pediatric asthma by promoting ferroptosis of eosinophils[J]. Allergol Immunopathol (Madr), 2023, 51(4): 164-174. PMID: 37422794. DOI: 10.15586/aei.v51i4.873.
45 Liu C, Wu X, Bing X, et al. H1N1 influenza virus infection through NRF2-KEAP1-GCLC pathway induces ferroptosis in nasal mucosal epithelial cells[J]. Free Radic Biol Med, 2023, 204: 226-242. PMID: 37146698. DOI: 10.1016/j.freeradbiomed.2023.05.004.
46 Liu J, Xu Y, Yan M, et al. 18β-glycyrrhetinic acid suppresses allergic airway inflammation through NF-κB and Nrf2/HO-1 signaling pathways in asthma mice[J]. Sci Rep, 2022, 12(1): 3121. PMID: 35210449. PMCID: PMC8873505. DOI: 10.1038/s41598-022-06455-6.
47 Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449. PMID: 36613888. PMCID: PMC9820499. DOI: 10.3390/ijms24010449.
48 Nishida Xavier da Silva T, Friedmann Angeli JP, Ingold I. GPX4: old lessons, new features[J]. Biochem Soc Trans, 2022, 50(3): 1205-1213. PMID: 35758268. DOI: 10.1042/BST20220682.
49 Lin L, Hu X, Li Q, et al. Methyltransferase-like 3 (METTL3) epigenetically modulates glutathione peroxidase 4 (GPX4) expression to affect asthma[J]. Iran J Allergy Asthma Immunol, 2023, 22(6): 551-560. PMID: 38477952. DOI: 10.18502/ijaai.v22i6.14644.
50 Gani F, Cottini M, Landi M, et al. Allergic rhinitis and COVID-19: friends or foes?[J]. Eur Ann Allergy Clin Immunol, 2022, 54(2): 53-59. PMID: 34503647. DOI: 10.23822/EurAnnACI.1764-1489.234.
51 Leynaert B, Neukirch F, Demoly P, et al. Epidemiologic evidence for asthma and rhinitis comorbidity[J]. J Allergy Clin Immunol, 2000, 106(5 Suppl): S201-S205. PMID: 11080732. DOI: 10.1067/mai.2000.110151.
PDF(564 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/