Mechanism of WAVE1 regulation of lipopolysaccharide-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages

ZENG Ting, YANG Yue-Qian, HE Jian, SI Dao-Lin, ZHANG Hui, WANG Xia, XIE Min

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (12) : 1341-1351.

PDF(2078 KB)
PDF(2078 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (12) : 1341-1351. DOI: 10.7499/j.issn.1008-8830.2408083
EXPERIMENTAL RESEARCH

Mechanism of WAVE1 regulation of lipopolysaccharide-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages

  • ZENG Ting, YANG Yue-Qian, HE Jian, SI Dao-Lin, ZHANG Hui, WANG Xia, XIE Min
Author information +
History +

Abstract

Objective To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages. Methods Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses. The experiment consisted of two parts. The first part included control, LPS, vector (LPS+oe-NC), WAVE1 overexpression (LPS+oe-WAVE1) groups. The second part included LPS, LPS+oe-NC, LPS+oe-WAVE1 and exogenous high mobility group box-1 (HMGB1) intervention (LPS+oe-WAVE1+HMGB1) groups. RT-PCR was used to measure mitochondrial DNA content, and RT-qPCR was used to detect the mRNA expression levels of WAVE1, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Western blot was performed to measure the protein expression of WAVE1, hexokinase 2, and pyruvate kinase M2. ELISA was utilized to detect the levels of TNF-α, IL-1β, IL-6, and HMGB1. JC-1 staining was used to assess mitochondrial membrane potential. Seahorse XP96 was used to evaluate oxygen consumption rate and extracellular acidification rate. MitoSOX probe was employed to measure mitochondrial reactive oxygen species levels, and 2-NBDG method was used to assess glucose uptake. Kits were used to measure pyruvate kinase activity, lactate, adenosine triphosphate (ATP), and HMGB1 levels. Results Compared with the control group, the LPS group showed lower levels of WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expression levels as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were significantly increased (P<0.05). Compared with the LPS+oe-NC group, the LPS+oe-WAVE1 group showed increased WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expressions, as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were decreased (P<0.05). Compared with the LPS+oe-WAVE1 group, the LPS+oe-WAVE1+HMGB1 group exhibited increased glucose uptake, lactate, ATP levels, and extracellular acidification rate (P<0.05). Conclusions WAVE1 participates in the regulation of LPS-induced inflammatory responses in macrophages by modulating the release of inflammatory factors, mitochondrial metabolism, and HMGB1 release.

Key words

Sepsis / WAVE1 / Warburg effect / Mitochondrial metabolism / High mobility group box-1 / Macrophage

Cite this article

Download Citations
ZENG Ting, YANG Yue-Qian, HE Jian, SI Dao-Lin, ZHANG Hui, WANG Xia, XIE Min. Mechanism of WAVE1 regulation of lipopolysaccharide-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(12): 1341-1351 https://doi.org/10.7499/j.issn.1008-8830.2408083

References

1 Bode C, Weis S, Sauer A, et al. Targeting the host response in sepsis: current approaches and future evidence[J]. Crit Care, 2023, 27(1): 478. PMID: 38057824. PMCID: PMC10698949. DOI: 10.1186/s13054-023-04762-6.
2 McMullan RR, McAuley DF, O'Kane CM, et al. Vascular leak in sepsis: physiological basis and potential therapeutic advances[J]. Crit Care, 2024, 28(1): 97. PMID: 38521954. PMCID: PMC10961003. DOI: 10.1186/s13054-024-04875-6.
3 Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis[J]. Nat Rev Nephrol, 2018, 14(7): 417-427. PMID: 29691495. DOI: 10.1038/s41581-018-0005-7.
4 Fang Y, Li Z, Yang L, et al. Emerging roles of lactate in acute and chronic inflammation[J]. Cell Commun Signal, 2024, 22(1): 276. PMID: 38755659. PMCID: PMC11097486. DOI: 10.1186/s12964-024-01624-8.
5 Zhang H, Feng YW, Yao YM. Potential therapy strategy: targeting mitochondrial dysfunction in sepsis[J]. Mil Med Res, 2018, 5(1): 41. PMID: 30474573. PMCID: PMC6260865. DOI: 10.1186/s40779-018-0187-0.
6 Tsuboi S. Requirement for a complex of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein in podosome formation in macrophages[J]. J Immunol, 2007, 178(5): 2987-2995. PMID: 17312144. PMCID: PMC1855218. DOI: 10.4049/jimmunol.178.5.2987.
7 Dinh H, Scholz GM, Hamilton JA. Regulation of WAVE1 expression in macrophages at multiple levels[J]. J Leukoc Biol, 2008, 84(6): 1483-1491. PMID: 18765479. DOI: 10.1189/jlb.0308216.
8 Cheng A, Arumugam TV, Liu D, et al. Pancortin-2 interacts with WAVE1 and Bcl-xL in a mitochondria-associated protein complex that mediates ischemic neuronal death[J]. J Neurosci, 2007, 27(7): 1519-1528. PMID: 17301160. PMCID: PMC6673736. DOI: 10.1523/JNEUROSCI.5154-06.2007.
9 Illescas M, Pe?as A, Arenas J, et al. Regulation of mitochondrial function by the actin cytoskeleton[J]. Front Cell Dev Biol, 2021, 9: 795838. PMID: 34993202. PMCID: PMC8725978. DOI: 10.3389/fcell.2021.795838.
10 Zhang Z, Wu B, Chai W, et al. Knockdown of WAVE1 enhances apoptosis of leukemia cells by downregulating autophagy[J]. Int J Oncol, 2016, 48(6): 2647-2656. PMID: 27035872. DOI: 10.3892/ijo.2016.3446.
11 Ding Y, Zheng Y, Huang J, et al. UCP2 ameliorates mitochondrial dysfunction, inflammation, and oxidative stress in lipopolysaccharide-induced acute kidney injury[J]. Int Immunopharmacol, 2019, 71: 336-349. PMID: 30952098. DOI: 10.1016/j.intimp.2019.03.043.
12 Baardman J, Verberk SGS, Prange KHM, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia[J]. Cell Rep, 2018, 25(8): 2044-2052.e5. PMID: 30463003. DOI: 10.1016/j.celrep.2018.10.092.
13 Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study[J]. Lancet, 2020, 395(10219): 200-211. PMID: 31954465. PMCID: PMC6970225. DOI: 10.1016/S0140-6736(19)32989-7.
14 Gao Q, Hernandes MS. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation, 2021, 44(6): 2143-2150. PMID: 34291398. PMCID: PMC11044530. DOI: 10.1007/s10753-021-01501-3.
15 Boissier F, Aissaoui N. Septic cardiomyopathy: diagnosis and management[J]. J Intensive Med, 2022, 2(1): 8-16. PMID: 36789232. PMCID: PMC9923980. DOI: 10.1016/j.jointm.2021.11.004.
16 Feng Z, Shi Q, Fan Y, et al. Ulinastatin and/or thymosin α1 for severe sepsis: a systematic review and meta-analysis[J]. J Trauma Acute Care Surg, 2016, 80(2): 335-340. PMID: 26517783. DOI: 10.1097/TA.0000000000000909.
17 Nakamori Y, Park EJ, Shimaoka M. Immune deregulation in sepsis and septic shock: reversing immune paralysis by targeting PD-1/PD-L1 pathway[J]. Front Immunol, 2021, 11: 624279. PMID: 33679715. PMCID: PMC7925640. DOI: 10.3389/fimmu.2020.624279.
18 Takenawa T, Miki H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement[J]. J Cell Sci, 2001, 114(Pt 10): 1801-1809. PMID: 11329366. DOI: 10.1242/jcs.114.10.1801.
19 Prabhu SS, Nair AS, Nirmala SV. Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs[J]. Arch Pharm Res, 2023, 46(9/10): 723-743. PMID: 37751031. DOI: 10.1007/s12272-023-01465-y.
20 谢克亮, 王瑶琪, 于泳浩, 等. 脓毒症线粒体动态变化与功能障碍的研究进展[J]. 国际麻醉学与复苏杂志, 2020, 41(5): 519-522. DOI: 10.3760/cma.j.cn321761-20200216-00042.
21 杨雪, 蔡小狄, 陆国平. 脓毒症与线粒体功能障碍[J]. 国际儿科学杂志, 2016, 43(1): 70-73. DOI: 10.3760/cma.j.issn.1673-4408.2016.01.019.
22 Hsu CG, Li W, Sowden M, et al. Pnpt1 mediates NLRP3 inflammasome activation by MAVS and metabolic reprogramming in macrophages[J]. Cell Mol Immunol, 2023, 20(2): 131-142. PMID: 36596874. PMCID: PMC9886977. DOI: 10.1038/s41423-022-00962-2.
23 Luo P, Zhang Q, Zhong TY, et al. Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect[J]. Mil Med Res, 2022, 9(1): 22. PMID: 35596191. PMCID: PMC9121578. DOI: 10.1186/s40779-022-00381-4.
24 Srivastava A, Mannam P. Warburg revisited: lessons for innate immunity and sepsis[J]. Front Physiol, 2015, 6: 70. PMID: 25806001. PMCID: PMC4353299. DOI: 10.3389/fphys.2015.00070.
25 Bar-Or D, Carrick M, Tanner A, et al. Overcoming the Warburg effect: is it the key to survival in sepsis?[J]. J Crit Care, 2018, 43: 197-201. PMID: 28915394. DOI: 10.1016/j.jcrc.2017.09.012.
26 Yang L, Xie M, Yang M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis[J]. Nat Commun, 2014, 5: 4436. PMID: 25019241. PMCID: PMC4104986. DOI: 10.1038/ncomms5436.
27 Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. PMID: 31645732. PMCID: PMC6818755. DOI: 10.1038/s41586-019-1678-1.
28 Ding H, Wang JJ, Zhang XY, et al. Lycium barbarum polysaccharide antagonizes LPS-induced inflammation by altering the glycolysis and differentiation of macrophages by triggering the degradation of PKM2[J]. Biol Pharm Bull, 2021, 44(3): 379-388. PMID: 33390389. DOI: 10.1248/bpb.b20-00752.
29 Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation[J]. Nat Commun, 2016, 7: 13280. PMID: 27779186. PMCID: PMC5093342. DOI: 10.1038/ncomms13280.
30 Burns JS, Manda G. Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance[J]. Int J Mol Sci, 2017, 18(12): 2755. PMID: 29257069. PMCID: PMC5751354. DOI: 10.3390/ijms18122755.
31 Yan C, Yang Z, Chen P, et al. GPR65 sensing tumor-derived lactate induces HMGB1 release from TAM via the cAMP/PKA/CREB pathway to promote glioma progression[J]. J Exp Clin Cancer Res, 2024, 43(1): 105. PMID: 38576043. PMCID: PMC10993467. DOI: 10.1186/s13046-024-03025-8.
32 Chen Y, Cai L, Guo X, et al. HMGB1-activated fibroblasts promote breast cancer cells metastasis via RAGE/aerobic glycolysis[J]. Neoplasma, 2021, 68(1): 71-78. PMID: 33030958. DOI: 10.4149/neo_2020_200610N620.
33 Zhang Q, Luo P, Xia F, et al. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis[J]. Cell Chem Biol, 2022, 29(8): 1248-1259.e6. PMID: 35858615. DOI: 10.1016/j.chembiol.2022.06.011.
34 Ji R, Chen W, Wang Y, et al. The Warburg effect promotes mitochondrial injury regulated by uncoupling protein-2 in septic acute kidney injury[J]. Shock, 2021, 55(5): 640-648. PMID: 32496419. DOI: 10.1097/SHK.0000000000001576.
PDF(2078 KB)

Accesses

Citation

Detail

Sections
Recommended

/