Expression of GATA1 in bronchial asthma and its effect on the transcription regulation of the ORMDL3 gene

CHEN Hu, LI Jiao-Jiao, YUAN Yue, JIN Rui

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (2) : 212-218.

PDF(666 KB)
HTML
PDF(666 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (2) : 212-218. DOI: 10.7499/j.issn.1008-8830.2408143
EXPERIMENTAL RESEARCH

Expression of GATA1 in bronchial asthma and its effect on the transcription regulation of the ORMDL3 gene

  • CHEN Hu, LI Jiao-Jiao, YUAN Yue, JIN Rui
Author information +
History +

Abstract

Objective To study the expression of the transcription factor GATA1 in bronchial asthma (referred to as asthma) and its effect on the expression level of the asthma susceptibility gene orosomucoid 1-like protein 3 (ORMDL3), along with the underlying molecular mechanisms. Methods The study included 28 cases of moderate asthma, 46 cases of severe asthma, and 12 normal controls from the Gene Expression Omnibus (GEO) database. The mRNA expression levels of GATA1 and ORMDL3 were analyzed among the asthma patients and the normal controls, including their correlation. The pGL-185/58 plasmid was co-transfected with GATA1 gene siRNA (si-GATA1 group) and siRNA negative control (si-control group) into BEAS-2B cells. Bioinformatics methods were used to predict GATA1 binding sites in the promoter region of the ORMDL3 gene. The dual-luciferase reporter gene system was employed to assess the promoter activity of ORMDL3, while real-time quantitative PCR and Western blotting were used to measure the mRNA and protein expression levels of GATA1 and ORMDL3. Chromatin immunoprecipitation (ChIP) assays were conducted to determine whether GATA1 binds to the promoter region of ORMDL3. Results The expression levels of GATA1 and ORMDL3 mRNA were significantly higher in the severe asthma group compared to the normal control group (P<0.001). Positive correlations were observed between GATA1 mRNA and ORMDL3 mRNA expression levels in both the moderate and severe asthma groups (r=0.636 and 0.341, respectively; P<0.05). In BEAS-2B cells, the dual-luciferase reporter assay revealed that ORMDL3 promoter luciferase activity, as well as ORMDL3 mRNA and protein expression levels, were lower in the si-GATA1 group compared to the si-control group (P<0.05). ChIP assay results demonstrated that GATA1 could bind to the promoter region of ORMDL3. Conclusions The expression of GATA1 is increased in asthma patients, which may regulate the promoter activity and expression of the asthma susceptibility gene ORMDL3.

Key words

Bronchial asthma / ORMDL3 / GATA1 / Promoter / Transcriptional regulation / Human bronchial epithelial cell

Cite this article

Download Citations
CHEN Hu, LI Jiao-Jiao, YUAN Yue, JIN Rui. Expression of GATA1 in bronchial asthma and its effect on the transcription regulation of the ORMDL3 gene[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(2): 212-218 https://doi.org/10.7499/j.issn.1008-8830.2408143

References

1 Schmiedel BJ, Seumois G, Samaniego-Castruita D, et al. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells[J]. Nat Commun, 2016, 7: 13426. PMID: 27848966. PMCID: PMC5116091. DOI: 10.1038/ncomms13426.
2 Ha SG, Ge XN, Bahaie NS, et al. ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48[J]. Nat Commun, 2013, 4: 2479. PMID: 24056518. PMCID: PMC3940275. DOI: 10.1038/ncomms3479.
3 Chen J, Miller M, Unno H, et al. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma[J]. J Allergy Clin Immunol, 2018, 142(1): 207-218.e6. PMID: 28889952. PMCID: PMC5842097. DOI: 10.1016/j.jaci.2017.08.015.
4 Nei Y, Obata-Ninomiya K, Tsutsui H, et al. GATA-1 regulates the generation and function of basophils[J]. Proc Natl Acad Sci U S A, 2013, 110(46): 18620-18625. PMID: 24167252. PMCID: PMC3831963. DOI: 10.1073/pnas.1311668110.
5 Miller M, Tam AB, Cho JY, et al. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6[J]. Proc Natl Acad Sci U S A, 2012, 109(41): 16648-16653. PMID: 23011799. PMCID: PMC3478632. DOI: 10.1073/pnas.1204151109.
6 Hur GY, Pham A, Miller M, et al. ORMDL3 but not neighboring 17q21 gene LRRC3C is expressed in human lungs and lung cells of asthmatics[J]. Allergy, 2020, 75(8): 2061-2065. PMID: 32086831. PMCID: PMC7387186. DOI: 10.1111/all.14243.
7 Russkamp D, Aguilar-Pimentel A, Alessandrini F, et al. IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma[J]. Allergy, 2019, 74(8): 1549-1560. PMID: 30829405. DOI: 10.1111/all.13759.
8 Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production[J]. Cytokine, 2015, 75(1): 14-24. PMID: 26044597. PMCID: PMC4532589. DOI: 10.1016/j.cyto.2015.05.010.
9 Gandhi NA, Bennett BL, Graham NM, et al. Targeting key proximal drivers of type 2 inflammation in disease[J]. Nat Rev Drug Discov, 2016, 15(1): 35-50. PMID: 26471366. DOI: 10.1038/nrd4624.
10 Korevaar DA, Westerhof GA, Wang J, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis[J]. Lancet Respir Med, 2015, 3(4): 290-300. PMID: 25801413. DOI: 10.1016/S2213-2600(15)00050-8.
11 Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline[J]. Eur Respir J, 2020, 55(1): 1900588. PMID: 31558662. DOI: 10.1183/13993003.00588-2019.
12 Bazan-Socha S, Mastalerz L, Cybulska A, et al. Prothrombotic state in asthma is related to increased levels of inflammatory cytokines, IL-6 and TNFα, in peripheral blood[J]. Inflammation, 2017, 40(4): 1225-1235. PMID: 28429138. PMCID: PMC5494034. DOI: 10.1007/s10753-017-0565-x.
13 James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: from physiology to pathology[J]. J Allergy Clin Immunol, 2019, 144(3): 634-640. PMID: 31376405. PMCID: PMC6910079. DOI: 10.1016/j.jaci.2019.07.023.
14 金哲, 蔡欣, 王强, 等. 北京地区哮喘儿童ORMDL3基因表达水平、生活方式与室内空气质量的相关性研究[J]. 医学研究杂志, 2010, 39(10): 22-25. DOI: 10.3969/j.issn.1673-548X.2010.10.009.
15 Jin R, Xu HG, Yuan WX, et al. Mechanisms elevating ORMDL3 expression in recurrent wheeze patients: role of Ets-1, p300 and CREB[J]. Int J Biochem Cell Biol, 2012, 44(7): 1174-1183. PMID: 22546552. DOI: 10.1016/j.biocel.2012.04.007.
16 Cantero-Recasens G, Fandos C, Rubio-Moscardo F, et al. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress[J]. Hum Mol Genet, 2010, 19(1): 111-121. PMID: 19819884. DOI: 10.1093/hmg/ddp471.
17 封洁, 庄丽丽, 朱亮华, 等. 小鼠ORMDL3表达质粒的构建[J]. 江苏医药, 2015, 41(2): 125-128. DOI: 10.19460/j.cnki.0253-3685.2015.02.001.
18 Dileepan M, Ha SG, Rastle-Simpson S, et al. Pulmonary delivery of ORMDL3 short hairpin RNA: a potential tool to regulate allergen-induced airway inflammation[J]. Exp Lung Res, 2020, 46(7): 243-257. PMID: 32578458. DOI: 10.1080/01902148.2020.1781297.
19 Drissen R, Buza-Vidas N, Woll P, et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing[J]. Nat Immunol, 2016, 17(6): 666-676. PMID: 27043410. PMCID: PMC4972405. DOI: 10.1038/ni.3412.
20 Du J, Stankiewicz MJ, Liu Y, et al. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein[J]. J Biol Chem, 2002, 277(45): 43481-43494. PMID: 12202480. DOI: 10.1074/jbc.M204777200.
21 Grisaru-Tal S, Itan M, Klion AD, et al. A new dawn for eosinophils in the tumour microenvironment[J]. Nat Rev Cancer, 2020, 20(10): 594-607. PMID: 32678342. DOI: 10.1038/s41568-020-0283-9.
22 Galdiero MR, Varricchi G, Seaf M, et al. Bidirectional mast cell-eosinophil interactions in inflammatory disorders and cancer[J]. Front Med (Lausanne), 2017, 4: 103. PMID: 28791287. PMCID: PMC5523083. DOI: 10.3389/fmed.2017.00103.
23 Singh G, Brass A, Knight CG, et al. Gut eosinophils and their impact on the mucus-resident microbiota[J]. Immunology, 2019, 158(3): 194-205. PMID: 31433857. PMCID: PMC6797872. DOI: 10.1111/imm.13110.
24 Mesnil C, Raulier S, Paulissen G, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset[J]. J Clin Invest, 2016, 126(9): 3279-3295. PMID: 27548519. PMCID: PMC5004964. DOI: 10.1172/JCI85664.
25 Lambrecht BN, Hammad H. The immunology of asthma[J]. Nat Immunol, 2015, 16(1): 45-56. PMID: 25521684. DOI: 10.1038/ni.3049.
26 刘勇, 刘丹, 柴文戍. 血IL-1β、IL-18、Eos水平与支气管哮喘急性发作病情程度的关系及对近期转归的预测效能探讨[J]. 东南大学学报(医学版), 2022, 41(4): 464-470. DOI: 10.3969/j.issn.1671-6264.2022.04.002.
27 Hirasawa R, Shimizu R, Takahashi S, et al. Essential and instructive roles of GATA factors in eosinophil development[J]. J Exp Med, 2002, 195(11): 1379-1386. PMID: 12045236. PMCID: PMC2193540. DOI: 10.1084/jem.20020170.
28 赵丹华, 李丽华, 钱新华. GATA1在造血系统中的作用[J]. 发育医学电子杂志, 2013, 1(1): 57-61.
29 张明, 孙小建, 王惠琴. 布地奈德福莫特罗粉吸入联合噻托溴铵、沙丁胺醇治疗老年支气管哮喘的效果及对气道重塑、MC-CP、S1P水平的影响[J]. 临床医学研究与实践, 2023, 8(35): 43-46. DOI: 10.19347/j.cnki.2096-1413.202335011.
30 张珂, 邓宏魁. GATA转录因子家族在细胞命运调控中的作用[J]. 生物化学与生物物理进展, 2014, 41(10): 1018-1028. DOI: 10.3724/SP.J.1206.2014.00260.
PDF(666 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/