Progress in the clinical application of cord blood transfusion in neonates
HAN Yue
Department of Neonatology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
Abstract The primary source of blood transfusions for neonates is allogeneic adult blood. While allogeneic adult blood can provide timely and effective transfusion support for neonates, there are differences in hemoglobin types and coagulation systems between adults and neonates, along with potential infection risks. In recent years, the clinical value of cord blood transfusion in early surgical interventions and anemia management for neonates has been increasingly recognized. Studies have shown that cord blood transfusion not only reduces the incidence of complications in preterm infants but also provides a safer alternative transfusion source for neonates. However, cord blood transfusion has not yet been widely adopted. This article reviews the advantages, clinical application progress, and significance of cord blood transfusion in neonates, to provide evidence supporting its broader clinical implementation.
Barreto Henriksson H, Hellstr?m A, Hesse C, et al. Morphology and biological data in cord blood eryhtrocyte units resembles adult units after processing and storage: meets current quality recommendations[J]. Transfus Apher Sci, 2022, 61(3): 103356. PMID: 35058136. DOI: 10.1016/j.transci.2022.103356.
Fernandez A, Chasovskyi K. The use of umbilical cord blood for autologous transfusion in neonatal open heart surgery[J]. J Cardiothorac Vasc Anesth, 2020, 34(2): 483-488. PMID: 31151859. DOI: 10.1053/j.jvca.2019.05.007.
Chakrabarty P, Rudra S. Autologus or allogenic uses of umbilical cord blood whole or RBC transfusion: a review[J]. Mymensingh Med J, 2013, 22(1): 210-217. PMID: 23416835.
Jiao Y, Li XY, Liu J. A new approach to cerebral palsy treatment: discussion of the effective components of umbilical cord blood and its mechanisms of action[J]. Cell Transplant, 2019, 28(5): 497-509. PMID: 30384766. PMCID: PMC7103597. DOI: 10.1177/0963689718809658.
Arbell D, Bin-Nun A, Zugayar D, et al. Deformability of cord blood vs. newborns' red blood cells: implication for blood transfusion[J]. J Matern Fetal Neonatal Med, 2022, 35(17): 3270-3275. PMID: 33541145. DOI: 10.1080/14767058.2020.1818203.
Barshtein G, Pries AR, Goldschmidt N, et al. Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient's blood flow[J]. Microcirculation, 2016, 23(7): 479-486. PMID: 27406436. DOI: 10.1111/micc.12296.
Falck AJ, Medina AE, Cummins-Oman J, et al. Mercury, lead, and cadmium exposure via red blood cell transfusions in preterm infants[J]. Pediatr Res, 2020, 87(4): 677-682. PMID: 31649339. DOI: 10.1038/s41390-019-0635-x.
Fedevych O, Chasovskyi K, Vorobiova G, et al. Open cardiac surgery in the first hours of life using autologous umbilical cord blood[J]. Eur J Cardiothorac Surg, 2011, 40(4): 985-989. PMID: 21353580. DOI: 10.1016/j.ejcts.2011.01.011.
Sarin K, Chauhan S, Bisoi AK, et al. Use of autologous umbilical cord blood transfusion in neonates undergoing surgical correction of congenital cardiac defects: a pilot study[J]. Ann Card Anaesth, 2018, 21(3): 270-274. PMID: 30052213. PMCID: PMC6078044. DOI: 10.4103/aca.ACA_194_17.
Chasovskyi K, Mykychak Y, Rudenko N, et al. Five-year experience with arterial switch operation in the first hours of life[J]. Semin Thorac Cardiovasc Surg, 2017, 29(1): 70-76. PMID: 28684001. DOI: 10.1053/j.semtcvs.2017.01.011.
Chasovskyi K, Fedevych O, Vorobiova G, et al. Arterial switch operation in the first hours of life using autologous umbilical cord blood[J]. Ann Thorac Surg, 2012, 93(5): 1571-1576. PMID: 22459547. DOI: 10.1016/j.athoracsur.2012.01.104.
Neema PK. In response to "Use of autologous umbilical cord blood transfusion in neonates undergoing surgical correction of congenital cardiac defects: a pilot study"[J]. Ann Card Anaesth, 2018, 21(3): 275-276. PMID: 30052214. PMCID: PMC6078038. DOI: 10.4103/aca.ACA_103_18.
Taguchi T, Suita S, Nakamura M, et al. The efficacy of autologous cord-blood transfusions in neonatal surgical patients[J]. J Pediatr Surg, 2003, 38(4): 604-607. PMID: 12677575. DOI: 10.1053/jpsu.2003.50131.
Titkov KV. Autotransfusion of cord blood erythrocytes in newborns with malformations requiring early surgical intervention[J]. Anesteziol Reanimatol, 2014, 59(6): 38-43. PMID: 25831701.
Khodabux CM, von Lindern JS, van Hilten JA, et al. A clinical study on the feasibility of autologous cord blood transfusion for anemia of prematurity[J]. Transfusion, 2008, 48(8): 1634-1643. PMID: 18507748. DOI: 10.1111/j.1537-2995.2008.01747.x.
Yavuz BA, Okulu E, Arsan S, et al. Is autologous cord blood transfusion effective and safe in preterm infants?[J]. Turk J Pediatr, 2017, 59(3): 352-354. PMID: 29376587. DOI: 10.24953/turkjped.2017.03.022.
Reuther S, Floegel K, Ceusters G, et al. Contamination rate of cryopreserved umbilical cord blood is inversely correlated with volume of sample collected and is also dependent on delivery mode[J]. Stem Cells Transl Med, 2022, 11(6): 604-612. PMID: 35486383. PMCID: PMC9216499. DOI: 10.1093/stcltm/szac020.
Hare J, DeLeon PG, Pool K, et al. Optimal umbilical cord blood collection, processing and cryopreservation methods for sustained public cord blood banking[J]. Cytotherapy, 2021, 23(11): 1029-1035. PMID: 34247985. DOI: 10.1016/j.jcyt.2021.05.004.
Risso MA, Deffune E, Luzo ?CM. Using umbilical cord blood as a source of paediatric packed red blood cells: processing and quality control[J]. Vox Sang, 2023, 118(8): 637-646. PMID: 37278100. DOI: 10.1111/vox.13475.
26 Kaufman DP, Khattar J, Lappin SL. Physiology, Fetal Hemoglobin[M]//StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024.
Odom TL, Eubanks J, Redpath N, et al. Development of necrotizing enterocolitis after blood transfusion in very premature neonates[J]. World J Pediatr, 2023, 19(1): 68-75. PMID: 36227506. DOI: 10.1007/s12519-022-00627-0.
Glaser K, H?rtel C, Dammann O, et al. Erythrocyte transfusions are associated with retinopathy of prematurity in extremely low gestational age newborns[J]. Acta Paediatr, 2023, 112(12): 2507-2515. PMID: 37667535. DOI: 10.1111/apa.16965.
Prasad N, Kumar K, Dubey A. Fetal hemoglobin, blood transfusion, and retinopathy of prematurity in preterm infants: an observational, prospective study[J]. Indian J Ophthalmol, 2023, 71(7): 2803-2807. PMID: 37417124. PMCID: PMC10491026. DOI: 10.4103/IJO.IJO_692_23.
Jiramongkolchai K, Repka MX, Tian J, et al. Effects of fetal haemoglobin on systemic oxygenation in preterm infants and the development of retinopathy of prematurity PacIFiHER Report No. 2[J]. Br J Ophthalmol, 2023, 107(3): 380-383. PMID: 34620603. DOI: 10.1136/bjophthalmol-2021-319546.
Torrejon-Rodriguez L, Pinilla-Gonzalez A, Lara Cantón I, et al. Effect of autologous umbilical cord blood transfusion in the development of retinopathy of prematurity: randomized clinical trial: study protocol[J]. Front Pediatr, 2023, 11: 1269797. PMID: 37900679. PMCID: PMC10602804. DOI: 10.3389/fped.2023.1269797.
Teofili L, Papacci P, Dani C, et al. Cord blood transfusions in extremely low gestational age neonates to reduce severe retinopathy of prematurity: results of a prespecified interim analysis of the randomized BORN trial[J]. Ital J Pediatr, 2024, 50(1): 142. PMID: 39113069. PMCID: PMC11305044. DOI: 10.1186/s13052-024-01714-w.
Kotowski M, Litwinska Z, Klos P, et al. Autologous cord blood transfusion in preterm infants: could its humoral effect be the kez to control prematurity-related complications? A preliminary study[J]. J Physiol Pharmacol, 2017, 68(6): 921-927. PMID: 29550804.
González EG, Casanova MA, Samarkanova D, et al. Feasibility of umbilical cord blood as a source of red blood cell transfusion in preterm infants[J]. Blood Transfus, 2021, 19(6): 510-517. PMID: 33370228. PMCID: PMC8580783. DOI: 10.2450/2020.0169-20.
Jansen M, Brand A, von Lindern JS, et al. Potential use of autologous umbilical cord blood red blood cells for early transfusion needs of premature infants[J]. Transfusion, 2006, 46(6): 1049-1056. PMID: 16734824. DOI: 10.1111/j.1537-2995.2006.00841.x.
Podraza W. A new approach to neonatal medical management that could transform the prevention of retinopathy of prematurity: theoretical considerations[J]. Med Hypotheses, 2020, 137: 109541. PMID: 31901610. DOI: 10.1016/j.mehy.2019.109541.
Bianchi M, Giannantonio C, Spartano S, et al. Allogeneic umbilical cord blood red cell concentrates: an innovative blood product for transfusion therapy of preterm infants[J]. Neonatology, 2015, 107(2): 81-86. PMID: 25401961. DOI: 10.1159/000368296.
Teofili L, Papacci P, Orlando N, et al. Allogeneic cord blood transfusions prevent fetal haemoglobin depletion in preterm neonates. Results of the CB-TrIP study[J]. Br J Haematol, 2020, 191(2): 263-268. PMID: 32510635. DOI: 10.1111/bjh.16851.
Committee of Thalassemia Prevention and Treatment, China Maternal and Child Health Association; Subspecialty Group of Hematology, Society of Pediatrics, Chinese Medical Association; China Thalassemia Prevention and Control Collaboration Network; Editorial Board of Chinese Journal. Guidelines for iron chelation therapy in thalassemia in China (2025)[J]. CJCP, 2025, 27(4): 377-388.
Neonatal Clinical Practice Guidelines Expert Committee of the Cross-Strait Medical and Health Exchange Association; Neonatal Evidence-Based Medicine Group of the Commission of Neonatal Medicine of the Cross-Strait Medical and Health Exchange Association; Editorial Office of the C. Clinical practice guidelines for the diagnosis and treatment of anemia of prematurity (2025)[J]. CJCP, 2025, 27(1): 1-17.
[10]
LIU Yin-Zhi, ZHANG Rong, XIE Jing-Jing, GUO Qiong, ZHAN Cai-Xia, CHEN Meng-Yu, LI Jun-Shuai, PENG Xiao-Ming. Two cases of neonatal Legionella pneumonia[J]. CJCP, 2024, 26(9): 986-988.