Research progress on phenotypic modifier genes in spinal muscular atrophy

PAN Wei, CAO Yan-Yan

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (2) : 229-235.

PDF(660 KB)
HTML
PDF(660 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (2) : 229-235. DOI: 10.7499/j.issn.1008-8830.2410064
REVIEW

Research progress on phenotypic modifier genes in spinal muscular atrophy

  • PAN Wei, CAO Yan-Yan
Author information +
History +

Abstract

Spinal muscular atrophy (SMA) is a common fatal autosomal recessive genetic disorder in childhood, primarily caused by homozygous deletion of the SMN1 gene. Its main characteristics include the degenerative changes in the anterior horn motor neurons of the spinal cord, leading to symmetrical progressive muscle weakness and atrophy of the proximal limbs. However, SMA patients with the same genetic background often exhibit different degrees of disease severity. In addition to the well-established modifier gene SMN2, the effect of other modifier genes on clinical phenotypes should not be overlooked. This paper reviews the latest advancements in the pathogenic and modifier genes of SMA, aiming to provide a deeper understanding of the pathogenic mechanisms and phenotypic differences in SMA, as well as to offer new strategies and targets for treating this condition.

Key words

Spinal muscular atrophy / Survival motor neuron 1 / Survival motor neuron 2 / Phenotypicmodifier gene

Cite this article

Download Citations
PAN Wei, CAO Yan-Yan. Research progress on phenotypic modifier genes in spinal muscular atrophy[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(2): 229-235 https://doi.org/10.7499/j.issn.1008-8830.2410064

References

1 李文辉, 李惠, 王达辉, 等. 我国脊髓性肌萎缩症多学科管理和诊治模式[J]. 中国实用儿科杂志, 2022, 37(4): 265-268. DOI: 10.19538/j.ek2022040606.
2 Wirth B. Spinal muscular atrophy: in the challenge lies a solution[J]. Trends Neurosci, 2021, 44(4): 306-322. PMID: 33423791. DOI: 10.1016/j.tins.2020.11.009.
3 Martí Y, Aponte Ribero V, Batson S, et al. A systematic literature review of the natural history of respiratory, swallowing, feeding, and speech functions in spinal muscular atrophy (SMA)[J]. J Neuromuscul Dis, 2024, 11(5): 889-904. PMID: 38943396. PMCID: PMC11380303. DOI: 10.3233/JND-230248.
4 Rouzier C, Chaussenot A, Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA)[J]. Arch Pediatr, 2020, 27(7S): 7S9-7S14. PMID: 33357600. DOI: 10.1016/S0929-693X(20)30270-0.
5 Kim JK, Jha NN, Feng Z, et al. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models[J]. J Clin Invest, 2020, 130(3): 1271-1287. PMID: 32039917. PMCID: PMC7269591. DOI: 10.1172/JCI131989.
6 Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches[J]. Front Cell Neurosci, 2024, 17: 1307636. PMID: 38259504. PMCID: PMC10801191. DOI: 10.3389/fncel.2023.1307636.
7 Ottesen EW, Singh NN, Seo J, et al. U1 snRNA interactions with deep intronic sequences regulate splicing of multiple exons of spinal muscular atrophy genes[J]. Front Neurosci, 2024, 18: 1412893. PMID: 39086841. PMCID: PMC11289892. DOI: 10.3389/fnins.2024.1412893.
8 Kray KM, McGovern VL, Chugh D, et al. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ?7SMA mice[J]. Neurobiol Dis, 2021, 159: 105488. PMID: 34425216. PMCID: PMC8502210. DOI: 10.1016/j.nbd.2021.105488.
9 刘珊, 熊晖. 脊髓性肌萎缩症的疾病修正治疗[J]. 中华实用儿科临床杂志, 2023, 38(6): 465-468. DOI: 10.3760/cma.j.cn101070-20220409-00381.
10 Butchbach MER. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): implications for spinal muscular atrophy phenotype and therapeutics development[J]. Int J Mol Sci, 2021, 22(15): 7896. PMID: 34360669. PMCID: PMC8348669. DOI: 10.3390/ijms22157896.
11 黄文琛, 瞿宇晋. 脊髓性肌萎缩症治疗研究进展[J]. 国际儿科学杂志, 2024, 51(2): 119-123. DOI: 10.3760/cma.j.issn.1673-4408.2024.02.012.
12 Dosi C, Masson R. The impact of three SMN2 gene copies on clinical characteristics and effect of disease-modifying treatment in patients with spinal muscular atrophy: a systematic literature review[J]. Front Neurol, 2024, 15: 1308296. PMID: 38487326. PMCID: PMC10937544. DOI: 10.3389/fneur.2024.1308296.
13 Blaschek A, K?lbel H, Schwartz O, et al. Newborn screening for SMA: can a wait-and-see strategy be responsibly justified in patients with four SMN2 copies?[J]. J Neuromuscul Dis, 2022, 9(5): 597-605. PMID: 35848034. DOI: 10.3233/JND-221510.
14 Cuscó I, Bernal S, Blasco-Pérez L, et al. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy[J]. Neurol Genet, 2020, 6(6): e530. PMID: 33324756. PMCID: PMC7713720. DOI: 10.1212/NXG.0000000000000530.
15 Wu X, Wang SH, Sun J, et al. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy[J]. Hum Mol Genet, 2017, 26(14): 2768-2780. PMID: 28460014. PMCID: PMC5886194. DOI: 10.1093/hmg/ddx166.
16 Prior TW, Krainer AR, Hua Y, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene[J]. Am J Hum Genet, 2009, 85(3): 408-413. PMID: 19716110. PMCID: PMC2771537. DOI: 10.1016/j.ajhg.2009.08.002.
17 Ruhno C, McGovern VL, Avenarius MR, et al. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype[J]. Hum Genet, 2019, 138(3): 241-256. PMID: 30788592. PMCID: PMC6503527. DOI: 10.1007/s00439-019-01983-0.
18 Cao YY, Qu YJ, He SX, et al. Association between SMN2 methylation and disease severity in Chinese children with spinal muscular atrophy[J]. J Zhejiang Univ Sci B, 2016, 17(1): 76-82. PMID: 26739529. PMCID: PMC4710843. DOI: 10.1631/jzus.B1500072.
19 Hensel N, Detering NT, Walter LM, et al. Resolution of pathogenic R-loops rescues motor neuron degeneration in spinal muscular atrophy[J]. Brain, 2020, 143(1): 2-5. PMID: 31886489. DOI: 10.1093/brain/awz394.
20 Sabbarini IM, Reif D, McQuown AJ, et al. Zinc-finger protein Zpr1 is a bespoke chaperone essential for eEF1A biogenesis[J]. Mol Cell, 2023, 83(2): 252-265.e13. PMID: 36630955. PMCID: PMC10016025. DOI: 10.1016/j.molcel.2022.12.012.
21 Cuartas J, Gangwani L. Zinc finger protein ZPR1: promising survival motor neuron protein-dependent modifier for the rescue of spinal muscular atrophy[J]. Neural Regen Res, 2022, 17(10): 2225-2227. PMID: 35259840. PMCID: PMC9083177. DOI: 10.4103/1673-5374.335798.
22 Kannan A, Jiang X, He L, et al. ZPR1 prevents R-loop accumulation, upregulates SMN2 expression and rescues spinal muscular atrophy[J]. Brain, 2020, 143(1): 69-93. PMID: 31828288. PMCID: PMC6935747. DOI: 10.1093/brain/awz373.
23 Ting CH, Lin CW, Wen SL, et al. Stat5 constitutive activation rescues defects in spinal muscular atrophy[J]. Hum Mol Genet, 2007, 16(5): 499-514. PMID: 17220171. DOI: 10.1093/hmg/ddl482.
24 Farooq F, Molina FA, Hadwen J, et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway[J]. J Clin Invest, 2011, 121(8): 3042-3050. PMID: 21785216. PMCID: PMC3148738. DOI: 10.1172/JCI46276.
25 Medrano S, Monges S, Gravina LP, et al. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina[J]. Eur J Paediatr Neurol, 2016, 20(6): 910-917. PMID: 27510309. DOI: 10.1016/j.ejpn.2016.07.017.
26 Meyer NH, Dellago H, Tam-Amersdorfer C, et al. Structural fuzziness of the RNA-organizing protein SERF determines a toxic gain-of-interaction[J]. J Mol Biol, 2020, 432(4): 930-951. PMID: 31794729. DOI: 10.1016/j.jmb.2019.11.014.
27 Tsai TY, Chen CY, Lin TW, et al. Amyloid modifier SERF1a interacts with polyQ-expanded huntingtin-exon 1 via helical interactions and exacerbates polyQ-induced toxicity[J]. Commun Biol, 2023, 6(1): 767. PMID: 37479809. PMCID: PMC10361993. DOI: 10.1038/s42003-023-05142-0.
28 Zhuri D, Gurkan H, Eker D, et al. Investigation on the effects of modifying genes on the spinal muscular atrophy phenotype[J]. Glob Med Genet, 2022, 9(3): 226-236. PMID: 36071912. PMCID: PMC9444347. DOI: 10.1055/s-0042-1751302.
29 Strathmann EA, H?lker I, Tschernoster N, et al. Epigenetic regulation of plastin 3 expression by the macrosatellite DXZ4 and the transcriptional regulator CHD4[J]. Am J Hum Genet, 2023, 110(3): 442-459. PMID: 36812914. PMCID: PMC10027515. DOI: 10.1016/j.ajhg.2023.02.004.
30 Yanyan C, Yujin Q, Jinli B, et al. Correlation of PLS3 expression with disease severity in children with spinal muscular atrophy[J]. J Hum Genet, 2014, 59(1): 24-27. PMID: 24172247. DOI: 10.1038/jhg.2013.111.
31 Ackermann B, Kr?ber S, Torres-Benito L, et al. Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality[J]. Hum Mol Genet, 2013, 22(7): 1328-1347. PMID: 23263861. DOI: 10.1093/hmg/dds540.
32 Bricceno KV, Martinez T, Leikina E, et al. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics[J]. Hum Mol Genet, 2014, 23(18): 4745-4757. PMID: 24760765. PMCID: PMC4140458. DOI: 10.1093/hmg/ddu189.
33 Oprea GE, Kr?ber S, McWhorter ML, et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy[J]. Science, 2008, 320(5875): 524-527. PMID: 18440926. PMCID: PMC4908855. DOI: 10.1126/science.1155085.
34 Hosseinibarkooie S, Peters M, Torres-Benito L, et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype[J]. Am J Hum Genet, 2016, 99(3): 647-665. PMID: 27499521. PMCID: PMC5011078. DOI: 10.1016/j.ajhg.2016.07.014.
35 Riessland M, Kaczmarek A, Schneider S, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis[J]. Am J Hum Genet, 2017, 100(2): 297-315. PMID: 28132687. PMCID: PMC5294679. DOI: 10.1016/j.ajhg.2017.01.005.
36 Upadhyay A, Hosseinibarkooie S, Schneider S, et al. Neurocalcin delta knockout impairs adult neurogenesis whereas half reduction is not pathological[J]. Front Mol Neurosci, 2019, 12: 19. PMID: 30853885. PMCID: PMC6396726. DOI: 10.3389/fnmol.2019.00019.
37 Abd El Mutaleb ANH, Ibrahim FAR, Megahed FAK, et al. NAIP gene deletion and SMN2 copy number as molecular tools in predicting the severity of spinal muscular atrophy[J]. Biochem Genet, 2024, 62(6): 5051-5072. PMID: 38388850. PMCID: PMC11604826. DOI: 10.1007/s10528-023-10657-6.
38 He J, Zhang QJ, Lin QF, et al. Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy[J]. Gene, 2013, 518(2): 325-329. PMID: 23352792. DOI: 10.1016/j.gene.2012.12.109.
39 Noguchi Y, Onishi A, Nakamachi Y, et al. Telomeric region of the spinal muscular atrophy locus is susceptible to structural variations[J]. Pediatr Neurol, 2016, 58: 83-89. PMID: 27268759. DOI: 10.1016/j.pediatrneurol.2016.01.019.
40 戴毅, 崔丽英. 脊髓性肌萎缩症的昨天、今天与明天[J]. 罕见病研究, 2022, 1(1): 28-33. DOI: 10.12376/j.issn.2097-0501.2022.01.005.
41 Haque US, Yokota T. Recent progress in gene-targeting therapies for spinal muscular atrophy: promises and challenges[J]. Genes (Basel), 2024, 15(8): 999. PMID: 39202360. PMCID: PMC11353366. DOI: 10.3390/genes15080999.
42 Niba ETE, Nishio H, Wijaya YOS, et al. Stability and oligomerization of mutated SMN protein determine clinical severity of spinal muscular atrophy[J]. Genes (Basel), 2022, 13(2): 205. PMID: 35205250. PMCID: PMC8872419. DOI: 10.3390/genes13020205.
PDF(660 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/