The function of circular RNA-microRNA-messenger RNA immune regulatory network in childhood allergic asthma

Sai-Hua HUANG, Jin-Tao ZHOU, Yan WANG, Xiao. HAN

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (8) : 936-944.

PDF(1740 KB)
PDF(1740 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (8) : 936-944. DOI: 10.7499/j.issn.1008-8830.2411052
CLINICAL RESEARCH

The function of circular RNA-microRNA-messenger RNA immune regulatory network in childhood allergic asthma

Author information +
History +

Abstract

Objective To investigate the potential circular RNA (circRNA)-microRNA (miRNA)-messenger RNA (mRNA) immune regulatory network in childhood allergic asthma by analyzing microarray datasets. Methods GEO database was used to obtain the datasets of circRNA, miRNA, and mRNA from children with allergic asthma and healthy controls. The Limma package was used to identify differentially expressed circRNA (DEcircRNA), miRNA (DEmiRNA), and mRNA (DEmRNA). ENCORI and other tools were used to predict and construct the regulatory network of endogenous RNA. The DAVID database was used to perform GO and KEGG enrichment analyses, and CIBERSORT and Pearson were used to identify genes associated with immune cell infiltration. Results A total of 130 DEcircRNAs, 40 DEmiRNAs, and 802 DEmRNAs were identified between the asthma and control groups, and a regulatory network consisting of 12 circRNAs, 7 miRNAs, and 75 mRNAs was established. The GO analysis showed that the differentially expressed genes were mainly involved in the regulation of growth and development, and the KEGG analysis showed that they were mainly involved in the mTOR signaling pathway. The CIBERSORT analysis showed that compared with the control group, the asthma group had higher percentages of CD8+ T cells and resting NK cells and lower percentages of resting CD4+ memory T cells and activated mast cells. In addition, the Pearson correlation analysis identified six key mRNAs that were positively correlated with immune cell infiltration. Conclusions The ceRNA immune regulatory network constructed in this study provides a basis for research on the mechanism of childhood allergic asthma and potential therapeutic targets.

Key words

Allergic asthma / Circular RNA / Immune infiltration / Bioinformatics / Child

Cite this article

Download Citations
Sai-Hua HUANG , Jin-Tao ZHOU , Yan WANG , et al. The function of circular RNA-microRNA-messenger RNA immune regulatory network in childhood allergic asthma[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(8): 936-944 https://doi.org/10.7499/j.issn.1008-8830.2411052

References

[1]
Weinberger M. Pediatric bronchial hyperresponsiveness and asthma phenotypes[J]. Ann Allergy Asthma Immunol, 2018, 121(4): 387-388. DOI: 10.1016/j.anai.2018.07.035 .
[2]
张志英, 靳秀红, 张小宁, 等. TRPV1在小儿支气管哮喘中的表达以及与B7-H3和miR-29c相关性分析[J]. 中国实验诊断学, 2022, 26(5): 668-671. DOI: 10.3969/j.issn.1007-4287.2022.05.008 .
[3]
Zhang W, Xiang Y, Lu C, et al. Numerical modeling of particle deposition in the conducting airways of asthmatic children[J]. Med Eng Phys, 2020, 76: 40-46. DOI: 10.1016/j.medengphy.2019.10.014 .
[4]
Nicole AG, Thomas C, Adnan C, et al. Allergic endotypes and phenotypes of asthma[J]. J Allergy Clin Immunol Pract, 2020, 8(2):429-440. PMCID: PMC7569362. DOI: 10.1016/j.jaip.2019.11.008 .
[5]
Beck AF, Huang B, Kercsmar CM, et al. Allergen sensitization profiles in a population-based cohort of children hospitalized for asthma[J]. Ann Am Thorac Soc, 2015, 12(3): 376-384. PMCID: PMC4418318. DOI: 10.1513/AnnalsATS.201408-376OC .
[6]
王湘云, 李莎, 白冲, 等. 支气管哮喘的表观遗传学研究进展[J]. 临床肺科杂志, 2018, 23(3): 533-536. DOI: 10.3969/j.issn.1009-6663.2018.03.041 .
[7]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. DOI: 10.1038/s41580-020-0243-y .
[8]
Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications[J]. Cell, 2022, 185(13): 2390. DOI: 10.1016/j.cell.2022.06.001 .
[9]
Li R, Wang Y, Song X, et al. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis[J]. Int J Mol Med, 2018, 42(6): 3256-3268. PMCID: PMC6202105. DOI: 10.3892/ijmm.2018.3892 .
[10]
Wu P, Mo Y, Peng M, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA[J]. Mol Cancer, 2020, 19(1): 22. PMCID: PMC6998289. DOI: 10.1186/s12943-020-1147-3 .
[11]
Lin J, Feng X, Zhang J. Circular RNA circHIPK3 modulates the proliferation of airway smooth muscle cells by miR-326/STIM1 axis[J]. Life Sci, 2020, 255: 117835. DOI: 10.1016/j.lfs.2020.117835 .
[12]
Huang Z, Cao Y, Zhou M, et al. Hsa_circ_0005519 increases IL-13/IL-6 by regulating hsa-let-7a-5p in CD4+ T cells to affect asthma[J]. Clin Exp Allergy, 2019, 49(8): 1116-1127. DOI: 10.1111/cea.13445 .
[13]
中华医学会儿科学分会呼吸学组,《中华儿科杂志》编辑委员会. 儿童支气管哮喘诊断与防治指南(2016年版)[C]//第二十次全国儿科中西医结合学术会议论文集. 西安: 中国中西医结合学会, 2016: 47-61.
[14]
Koczulla AR, Vogelmeier CF, Garn H, et al. New concepts in asthma: clinical phenotypes and pathophysiological mechanisms[J]. Drug Discov Today, 2017, 22(2): 388-396. DOI: 10.1016/j.drudis.2016.11.008 .
[15]
Lee E, Lee SH, Kwon JW, et al. Persistent asthma phenotype related with late-onset, high atopy, and low socioeconomic status in school-aged Korean children[J]. BMC Pulm Med, 2017, 17(1): 45. PMCID: PMC5324247. DOI: 10.1186/s12890-017-0387-5 .
[16]
Tang HH, Teo SM, Belgrave DC, et al. Trajectories of childhood immune development and respiratory health relevant to asthma and allergy[J]. Elife, 2018, 7: e35856. PMCID: PMC6221547. DOI: 10.7554/eLife.35856 .
[17]
Liang Q, Fu J, Wang X, et al. circS100A11 enhances M2a macrophage activation and lung inflammation in children with asthma[J]. Allergy, 2023, 78(6): 1459-1472. DOI: 10.1111/all.15515 .
[18]
Han X, Huang S, Xue P, et al. LncRNA PTPRE-AS1 modulates M2 macrophage activation and inflammatory diseases by epigenetic promotion of PTPRE[J]. Sci Adv, 2019, 5(12): eaax9230. PMCID: PMC6905863. DOI: 10.1126/sciadv.aax9230 .
[19]
Zhang X, Zhang X, Feng S, et al. The specific microRNA profile and functional networks for children with allergic asthma[J]. J Asthma Allergy, 2022, 15: 1179-1194. PMCID: PMC9439701. DOI: 10.2147/JAA.S378547 .
[20]
Su Y, Geng L, Ma Y, et al. Identification of circular RNA circVPS33A as a modulator in house dust mite-induced injury in human bronchial epithelial cells[J]. Exp Lung Res, 2021, 47(8): 368-381. DOI: 10.1080/01902148.2021.1974125 .
[21]
Wang X, Xu C, Cai Y, et al. CircZNF652 promotes the goblet cell metaplasia by targeting the miR-452-5p/JAK2 signaling pathway in allergic airway epithelia[J]. J Allergy Clin Immunol, 2022, 150(1): 192-203. DOI: 10.1016/j.jaci.2021.10.041 .
[22]
Huang JQ, Wang F, Wang LT, et al. Circular RNA ERBB2 contributes to proliferation and migration of airway smooth muscle cells via miR-98-5p/IGF1R signaling in asthma[J]. J Asthma Allergy, 2021, 14: 1197-1207. PMCID: PMC8488044. DOI: 10.2147/JAA.S326058 .
[23]
Shang Y, Sun Y, Xu J, et al. Exosomes from mmu_circ_0001359-modified ADSCs attenuate airway remodeling by enhancing FOXO1 signaling-mediated M2-like macrophage activation[J]. Mol Ther Nucleic Acids, 2020, 19: 951-960. PMCID: PMC6997502. DOI: 10.1016/j.omtn.2019.10.049 .
[24]
Ying K, Chen J, Fu Z, et al. FAS-mediated circRNA-miRNA-mRNA crosstalk network regulates immune cell infiltration in cerebral infarction[J]. J Mol Neurosci, 2023, 73(2-3): 117-128. DOI: 10.1007/s12031-023-02100-7 .
[25]
Zhong G, Lin Y, Huang Z. Identification of a novel circRNA–miRNA–mRNA regulatory axis in hepatocellular carcinoma based on bioinformatics analysis[J]. Sci Rep, 2023, 13(1): 3728. PMCID: PMC9988886. DOI: 10.1038/s41598-023-30567-2 .
[26]
Hu D, Cai Y, He L, et al. Identification of a CircRNA-miRNA-mRNA network and integrated analysis of immune infiltration in oral squamous cell carcinoma[J]. J Cancer, 2023, 14(2): 250-261. PMCID: PMC9891867. DOI: 10.7150/jca.79967 .
[27]
Zhao R, Ni J, Lu S, et al. CircUBAP2-mediated competing endogenous RNA network modulates tumorigenesis in pancreatic adenocarcinoma[J]. Aging (Albany NY), 2019, 11(19): 8484-8501. PMCID: PMC6814619. DOI: 10.18632/aging.102334 .
[28]
闫巧霞, 高阳, 李艳春, 等. 支气管哮喘儿童外周血中NK细胞与NK样细胞水平检测[J]. 中国妇幼保健, 2015, 30(16): 2547-2549. DOI: 10.7620/zgfybj.j.issn.1001-4411.2015.16.25 .
[29]
Carpio-Pedroza JC, Vaughan G, del Rio-Navarro BE, et al. Participation of CD161(+) and invariant natural killer T cells in pediatric asthma exacerbations[J]. Allergy Asthma Proc, 2013, 34(1): 84-92. DOI: 10.2500/aap.2013.34.3619 .
[30]
杜毅, 赵德育. 生物制剂在儿童哮喘治疗中的应用及研究进展[J]. 儿科药学杂志, 2023, 29(7): 58-63. DOI: 10.13407/j.cnki.jpp.1672-108X.2023.07.016 .
[31]
Temesi G, Virág V, Hadadi E, et al. Novel genes in human asthma based on a mouse model of allergic airway inflammation and human investigations[J]. Allergy Asthma Immunol Res, 2014, 6(6): 496-503. PMCID: PMC4214969. DOI: 10.4168/aair.2014.6.6.496 .
[32]
Zhou W, Chen J, Wang J. Comprehensive prognostic and immunological analysis of Ubiquitin Specific Peptidase 28 in pan-cancers and identification of its role in hepatocellular carcinoma cell lines[J]. Aging (Albany NY), 2023, 15(13): 6545-6576. PMCID: PMC10373984. DOI: 10.18632/aging.204869 .
[33]
Jimenez-Moyano E, Ruiz A, Kløverpris HN, et al. Nonhuman TRIM5 variants enhance recognition of HIV-1-infected cells by CD8+ T cells[J]. J Virol, 2016, 90(19): 8552-8562. PMCID: PMC5021395. DOI: 10.1128/JVI.00819-16 .

Footnotes

所有作者均声明无利益冲突。

PDF(1740 KB)

Accesses

Citation

Detail

Sections
Recommended

/