Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia

Lin-Xiao TENG, Qi AN, Lei WANG, Nan WANG, Qing-Ling KONG, Rui HAN, Yuan WANG, Lu LIU, Yan WANG, Shu-Mei XU, Kun-Peng SHI, Fang-Shan QIU, Xi-Xi DU, Jin-Rui SHI

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (7) : 802-807.

PDF(617 KB)
PDF(617 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (7) : 802-807. DOI: 10.7499/j.issn.1008-8830.2411059
CLINICAL RESEARCH

Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia

Author information +
History +

Abstract

Objective To investigate the effects of methylenetetrahydrofolate reductase (MTHFR) rs1801133 and γ-glutamyl hydrolase (GGH) rs11545078 gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate (MTX) therapy in children with acute lymphoblastic leukemia (ALL). Methods Children with ALL treated at the Xuzhou Children's Hospital of Xuzhou Medical University from January 2021 to April 2024 were selected for this study. Genotypes of MTHFR rs1801133 and GGH rs11545078 were determined using multiplex polymerase chain reaction. MTX plasma concentrations were measured by enzyme-multiplied immunoassay technique, and toxicity was graded according to the Common Terminology Criteria for Adverse Events version 5.0. The relationships between MTHFR rs1801133 and GGH rs11545078 genotypes and both MTX plasma concentrations and associated toxicities were analyzed. Results In the low-risk ALL group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 72 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05), and the GGH rs11545078 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with the occurrence of reduced hemoglobin (P<0.05), and the GGH rs11545078 genotype was associated with the occurrence of thrombocytopenia (P<0.05). Conclusions Detection of MTHFR rs1801133 and GGH rs11545078 genotypes can be used to predict increased MTX plasma concentrations and the occurrence of toxic reactions in high-dose MTX treatment of ALL, enabling timely interventions to enhance safety.

Key words

Acute lymphoblastic leukemia / Methotrexate / Methylenetetrahydrofolate reductase / Pharmacogenomics / Toxicity / Child

Cite this article

Download Citations
Lin-Xiao TENG , Qi AN , Lei WANG , et al . Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(7): 802-807 https://doi.org/10.7499/j.issn.1008-8830.2411059

References

[1]
Toksvang LN, Lee SHR, Yang JJ, et al. Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations[J]. Leukemia, 2022, 36(7): 1749-1758. PMCID: PMC9252897. DOI: 10.1038/s41375-022-01591-4 .
[2]
Tan Y, Kong Q, Li X, et al. Relationship between methylenetetrahydrofolate reductase gene polymorphisms and methotrexate drug metabolism and toxicity[J]. Transl Pediatr, 2023, 12(1): 31-45. PMCID: PMC9926134. DOI: 10.21037/tp-22-671 .
[3]
Hamed KM, Dighriri IM, Baomar AF, et al. Overview of methotrexate toxicity: a comprehensive literature review[J]. Cureus, 2022, 14(9): e29518. PMCID: PMC9595261. DOI: 10.7759/cureus.29518 .
[4]
Zhou Y, He H, Ding L, et al. Effects of gene polymorphisms on delayed MTX clearance, toxicity, and metabolomic changes after HD-MTX treatment in children with acute lymphoblastic leukemia[J]. Eur J Pediatr, 2024, 183(2): 581-590. DOI: 10.1007/s00431-023-05267-8 .
[5]
Shen Y, Wang Z, Zhou F, et al. The influence of MTHFR genetic polymorphisms on methotrexate therapy in pediatric acute lymphoblastic leukemia[J]. Open Life Sci, 2021, 16(1): 1203-1212. PMCID: PMC8572804. DOI: 10.1515/biol-2021-0121 .
[6]
孟岑, 卢雨昕, 徐刚, 等. 在儿童急性淋巴细胞白血病中大剂量氨甲蝶呤药物毒性与基因多态性的相关性研究进展[J]. 实用药物与临床, 2020, 23(6): 561-566. DOI: 10.14053/j.cnki.ppcr.202006020 .
[7]
Wang SM, Kong XY, Li M, et al. Association of GGH promoter methylation levels with methotrexate concentrations in Chinese children with acute lymphoblastic leukemia[J]. Pharmacotherapy, 2020, 40(7): 614-622. DOI: 10.1002/phar.2430 .
[8]
Shen S, Chen X, Cai J, et al. Effect of dasatinib vs imatinib in the treatment of pediatric philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial[J]. JAMA Oncol, 2020, 6(3): 358-366. PMCID: PMC6990720. DOI: 10.1001/jamaoncol.2019.5868 .
[9]
宋再伟, 刘爽, 赵荣生, 等. «中国大剂量氨甲蝶呤循证用药指南»解读[J]. 中国药房, 2022, 33(16): 2032-2039. DOI: 10.6039/j.issn.1001-0408.2022.16.21 .
[10]
赵海艳, 于芝颖, 黄琳. 骨肉瘤儿童多次大剂量氨甲蝶呤化疗后出现严重消除延迟病例分析[J]. 中国医药导刊, 2023, 25(4): 444-446. DOI: 10.3969/j.issn.1009-0959.2023.04.016 .
[11]
李琰, 张文靓, 姚敏, 等. MTHFR基因多态性与急性淋巴细胞白血病患儿大剂量氨甲蝶呤血药浓度和不良反应的相关性研究[J]. 中国药物应用与监测, 2022, 19(1): 4-7. DOI: 10.3969/j.issn.1672-8157.2022.01.002 .
[12]
Haase R, Elsner K, Merkel N, et al. High dose methotrexate treatment in childhood ALL: pilot study on the impact of the MTHFR 677C>T and 1298A>C polymorphisms on MTX-related toxicity[J]. Klin Padiatr, 2012, 224(3): 156-159. DOI: 10.1055/s-0032-1304623 .
[13]
Yang B, Liu Y, Li Y, et al. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: findings from 15357 adults of Han nationality[J]. PLoS One, 2013, 8(3): e57917. PMCID: PMC3589470. DOI: 10.1371/journal.pone.0057917 .
[14]
Li M, Wang SM, Wu WS, et al. Frequency distribution of five SNPs in human GGH gene and their effects on clinical outcomes of Chinese pediatric patients with acute lymphoblastic leukemia[J]. Pharmazie, 2020, 75(4): 142-146. DOI: 10.1691/ph.2020.9932 .
[15]
张洪洪. GGH基因多态性与氨甲蝶呤药物敏感性的关系[J]. 国际儿科学杂志, 2011, 38(5): 497-500. DOI: 10.3760/cma.j.issn.1673-4408.2011.05.023 .
[16]
杨凤英, 许吕宏, 王健, 等. MTHFR C677T基因多态性与儿童急性淋巴细胞白血病大剂量氨甲蝶呤治疗不良反应的相关性研究[J]. 中国实验血液学杂志, 2023, 31(4): 967-972. DOI: 10.19746/j.cnki.issn1009-2137.2023.04.006 .
[17]
Shendy K, Abdelkawy K, Ali AA, et al. The effects of genetic polymorphism on toxicity and pharmacokinetics of methotrexate in Egyptian adult patients with leukaemia or lymphoma[J]. Xenobiotica, 2024, 54(2): 95-105. DOI: 10.1080/00498254.2024.2320778 .
[18]
李菲, 尹郸丹, 周小兰, 等. 急性淋巴细胞白血病患儿GSTP1MTHFR基因多态性对大剂量氨甲蝶呤不良反应的影响[J]. 中国实验血液学杂志, 2017, 25(3): 723-728. DOI: 10.7534/j.issn.1009-2137.2017.03.016 .
[19]
Yousef AM, Farhad R, Alshamaseen D, et al. Folate pathway genetic polymorphisms modulate methotrexate-induced toxicity in childhood acute lymphoblastic leukemia[J]. Cancer Chemother Pharmacol, 2019, 83(4): 755-762. DOI: 10.1007/s00280-019-03776-8 .
[20]
Guo Q, Sun JL, Li R, et al. Involvement of the ABCB1 C3435T variant but not the MTHFR C677T or MTHFR A1298C variant in high-dose methotrexate-induced toxicity in pediatric acute lymphoblastic leukemia patients in China[J]. Int J Gen Med, 2024, 17: 1221-1231. PMCID: PMC10981894. DOI: 10.2147/IJGM.S453394 .
[21]
白小红, 牛佳慧, 倪美艳, 等. MTHFR基因多态性与大剂量氨甲蝶呤治疗儿童急性淋巴细胞白血病的临床疗效及药物不良反应的相关性分析[J]. 中国临床药理学杂志, 2021, 37(22): 3056-3059. DOI: 10.13699/j.cnki.1001-6821.2021.22.010 .
[22]
Song Z, Hu Y, Liu S, et al. The role of genetic polymorphisms in high-dose methotrexate toxicity and response in hematological malignancies: a systematic review and meta-analysis[J]. Front Pharmacol, 2021, 12: 757464. PMCID: PMC8570281. DOI: 10.3389/fphar.2021.757464 .
[23]
Kalantari A, Zaker F, Ansari S, et al. The effect of polymorphisms of gamma-glutamyl hydrolase (GGH) gene on methotrexate-induced toxicity in acute lymphoblastic leukemia[J]. Toxin Rev, 2015, 34(3): 136-141. DOI: 10.3109/15569543.2015.1083033 .

Footnotes

所有作者声明无利益冲突。

PDF(617 KB)

Accesses

Citation

Detail

Sections
Recommended

/