FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway

Yan-Jun ZHANG, Fei-Fei XIAO, Xiao-Hua LI, Shen-Hua TANG, Yi SANG, Chao-Yue LIU, Jian-Chang LI

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (5) : 601-608.

PDF(836 KB)
HTML
PDF(836 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (5) : 601-608. DOI: 10.7499/j.issn.1008-8830.2411076
EXPERIMENTAL RESEARCH

FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway

Author information +
History +

Abstract

Objective To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG). Methods Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene. Results Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05). Conclusions FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.

Key words

Type 1 diabetes mellitus / Inflammation / Oxidative stress / Vascular endothelial dysfunction / Fibroblast growth factor19 / Human umbilical vein endothelial cell

Cite this article

Download Citations
Yan-Jun ZHANG , Fei-Fei XIAO , Xiao-Hua LI , et al . FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(5): 601-608 https://doi.org/10.7499/j.issn.1008-8830.2411076

References

1
袁雪雯, 王旭, 唐宁, 等. 1型糖尿病伴糖尿病酮症酸中毒患儿发生急性肾损伤的临床研究[J]. 中国当代儿科杂志, 2022, 24(8): 858-862. PMCID: PMC9425873. DOI: 10.7499/j.issn.1008-8830.2203123 .
2
Yu MG, Gordin D, Fu J, et al. Protective factors and the pathogenesis of complications in diabetes[J]. Endocr Rev, 2024, 45(2): 227-252. PMCID: PMC10911956. DOI: 10.1210/endrev/bnad030 .
3
Zhou X, Yu L, Zhao Y, et al. Panvascular medicine: an emerging discipline focusing on atherosclerotic diseases[J]. Eur Heart J, 2022, 43(43): 4528-4531. DOI: 10.1093/eurheartj/ehac448 .
4
Eelen G, de Zeeuw P, Simons M, et al. Endothelial cell metabolism in normal and diseased vasculature[J]. Circ Res, 2015, 116(7): 1231-1244. PMCID: PMC4380230. DOI: 10.1161/CIRCRESAHA.116.302855 .
5
Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease[J]. EMBO Mol Med, 2014, 6(9): 1105-1120. PMCID: PMC4197858. DOI: 10.15252/emmm.201404156 .
6
Antar SA, Abdo W, Taha RS, et al. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats[J]. Life Sci, 2022, 291: 120260. DOI: 10.1016/j.lfs.2021.120260 .
7
于馨雅, 申元英, 郭乐. Nrf2/HO-1通路在氧化应激和炎性反应中的作用[J]. 医学研究杂志, 2023, 52(7): 19-22. DOI: 10.11969/j.issn.1673-548X.2023.07.005 .
8
Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221-3247. PMCID: PMC4967105. DOI: 10.1007/s00018-016-2223-0 .
9
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66: 102852. PMCID: PMC10462885. DOI: 10.1016/j.redox.2023.102852 .
10
Ryan KK, Kohli R, Gutierrez-Aguilar R, et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats[J]. Endocrinology, 2013, 154(1): 9-15. PMCID: PMC3529386. DOI: 10.1210/en.2012-1891 .
11
Li X, Wu D, Tian Y. Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway[J]. Biochem Biophys Res Commun, 2018, 502(1): 62-68. DOI: 10.1016/j.bbrc.2018.05.121 .
12
Fang Y, Zhao Y, He S, et al. Overexpression of FGF19 alleviates hypoxia/reoxygenation-induced injury of cardiomyocytes by regulating GSK-3β/Nrf2/ARE signaling[J]. Biochem Biophys Res Commun, 2018, 503(4): 2355-2362. DOI: 10.1016/j.bbrc.2018.06.161 .
13
Gadaleta RM, Moschetta A. Metabolic messengers: fibroblast growth factor 15/19[J]. Nat Metab, 2019, 1(6): 588-594. DOI: 10.1038/s42255-019-0074-3 .
14
Somm E, Jornayvaz FR. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives[J]. Endocr Rev, 2018, 39(6): 960-989. DOI: 10.1210/er.2018-00134 .
15
Wang D, Zhu W, Li J, et al. Serum concentrations of fibroblast growth factors 19 and 21 in women with gestational diabetes mellitus: association with insulin resistance, adiponectin, and polycystic ovary syndrome history[J]. PLoS One, 2013, 8(11): e81190. PMCID: PMC3834317. DOI: 10.1371/journal.pone.0081190 .
16
Fon Tacer K, Bookout AL, Ding X, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse[J]. Mol Endocrinol, 2010, 24(10): 2050-2064. PMCID: PMC2954642. DOI: 10.1210/me.2010-0142 .
17
Hu J, Tang Y, Liu H, et al. Decreased serum fibroblast growth factor 19 level is a risk factor for type 1 diabetes[J]. Ann Transl Med, 2021, 9(5): 376. PMCID: PMC8033349. DOI: 10.21037/atm-20-5203 .
18
Perry RJ, Lee S, Ma L, et al. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis[J]. Nat Commun, 2015, 6: 6980. PMCID: PMC4413509. DOI: 10.1038/ncomms7980 .
19
Stejskal D, Karpísek M, Hanulová Z, et al. Fibroblast growth factor-19: development, analytical characterization and clinical evaluation of a new ELISA test[J]. Scand J Clin Lab Invest, 2008, 68(6): 501-507. DOI: 10.1080/00365510701854967 .
20
Lai Y, Wang H, Xia X, et al. Serum fibroblast growth factor 19 is decreased in patients with overt hypothyroidism and subclinical hypothyroidism[J]. Medicine (Baltimore), 2016, 95(39): e5001. PMCID: PMC5265952. DOI: 10.1097/MD.0000000000005001 .
21
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, et al. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy[J]. J Pathol, 2023, 261(3): 335-348. DOI: 10.1002/path.6193 .
22
Michiels C. Endothelial cell functions[J]. J Cell Physiol, 2003, 196(3): 430-443. DOI: 10.1002/jcp.10333 .
23
Wang J, Alexanian A, Ying R, et al. Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase[J]. Arterioscler Thromb Vasc Biol, 2012, 32(3): 712-720. PMCID: PMC3319449. DOI: 10.1161/ATVBAHA.111.227389 .
24
Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes[J]. J Clin Invest, 1994, 94(1): 110-117. PMCID: PMC296288. DOI: 10.1172/JCI117296 .
25
Li L, Wang H, Pang S, et al. rhFGF-21 accelerates corneal epithelial wound healing through the attenuation of oxidative stress and inflammatory mediators in diabetic mice[J]. J Biol Chem, 2023, 299(9): 105127. PMCID: PMC10481360. DOI: 10.1016/j.jbc.2023.105127 .
26
Liu T, Tang X, Cui Y, et al. Fibroblast growth factor 19 improves LPS-induced lipid disorder and organ injury by regulating metabolomic characteristics in mice[J]. Oxid Med Cell Longev, 2022, 2022: 9673512. PMCID: PMC9279090. DOI: 10.1155/2022/9673512 .
27
Zhang Q, Liu J, Duan H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34: 43-63. PMCID: PMC8655139. DOI: 10.1016/j.jare.2021.06.023 .
28
Mansouri A, Reiner Ž, Ruscica M, et al. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases[J]. J Clin Med, 2022, 11(5): 1313. PMCID: PMC8911353. DOI: 10.3390/jcm11051313 .
29
Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther, 2022, 7(1): 78. PMCID: PMC8913803. DOI: 10.1038/s41392-022-00925-z .
30
Carvalho MB, Jorge GMCP, Zanardo LW, et al. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials[J]. Am J Physiol Endocrinol Metab, 2024, 327(3): E279-E289. DOI: 10.1152/ajpendo.00156.2024 .
31
Li X, Lu W, Kharitonenkov A, et al. Targeting the FGF19–FGFR4 pathway for cholestatic, metabolic, and cancerous diseases[J]. J Intern Med, 2024, 295(3): 292-312. DOI: 10.1111/joim.13767 .

张艳君负责研究设计;张艳君、孝飞飞、李晓花、桑义、刘超越负责实验;张艳君负责数据分析;张艳君、李建厂负责撰写论文;李建厂、张艳君、唐慎华负责论文修改。

PDF(836 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/