Lipid analysis in children with bronchial asthma based on liquid chromatography-mass spectrometry: a prospective study

Te FENG, Li-Na XIE, Yu-Hui ZHANG, Yan-Jun GUO

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (6) : 716-722.

PDF(684 KB)
PDF(684 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (6) : 716-722. DOI: 10.7499/j.issn.1008-8830.2411112
CLINICAL RESEARCH

Lipid analysis in children with bronchial asthma based on liquid chromatography-mass spectrometry: a prospective study

Author information +
History +

Abstract

Objective To explore the lipidomic characteristics of children with bronchial asthma (hereafter referred to as asthma) and identify potential biomarkers for asthma. Methods A total of 26 asthmatic children were prospectively enrolled as the asthma group, and 20 healthy children served as the healthy control group. The asthma group was further divided into atopic (n=13) and non-atopic (n=13) subgroups based on IgE levels. Serum lipid metabolites were analyzed using liquid chromatography-mass spectrometry, followed by statistical analysis and data visualization. Results A total of 1 435 lipids were detected in the 46 children, primarily glycerophospholipids (625/1 435, 43.55%). Significant differences were observed in serum lipid profiles between the asthma and control groups. Twelve significantly differential lipids were identified, with receiver operating characteristic curve analysis showing that phosphatidylserine (PS)(18:0/20:4) and ceramide (Cer)(c16:0) exhibited the highest diagnostic value for asthma. The relative abundances of PS(18:0/20:4) and PS(18:0/22:6) were higher in the atopic subgroup than in the non-atopic subgroup (P<0.05) and positively correlated with total IgE levels in asthmatic children (r=0.675 and 0.740, respectively; P<0.05). Conclusions Asthmatic children exhibit significant lipid metabolic disturbances, primarily characterized by abnormal glycerophospholipid metabolism. Among these, PS(18:0/20:4) and Cer(c16:0) demonstrate specific alterations and may serve as potential diagnostic biomarkers for asthma. Furthermore, the positive correlation between PS(18:0/20:4) and PS(18:0/22:6) levels and serum total IgE suggests their possible involvement in immune regulation in asthma.

Key words

Bronchial asthma / Biomarker / Lipidomics / Child

Cite this article

Download Citations
Te FENG , Li-Na XIE , Yu-Hui ZHANG , et al. Lipid analysis in children with bronchial asthma based on liquid chromatography-mass spectrometry: a prospective study[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(6): 716-722 https://doi.org/10.7499/j.issn.1008-8830.2411112

References

1
中国医药教育协会儿科专业委员会, 中华医学会儿科学分会呼吸学组哮喘协作组, 中国医师协会呼吸医师分会儿科呼吸工作委员会, 等. 中国儿童支气管哮喘诊治现状及发展策略(2022)[J]. 中华实用儿科临床杂志, 2023, 38(9): 647-680. DOI: 10.3760/cma.j.cn101070-20230426-00332 .
2
Teague WG, Griffiths CD, Boyd K, et al. A novel syndrome of silent rhinovirus-associated bronchoalveolitis in children with recurrent wheeze[J]. J Allergy Clin Immunol, 2024, 154(3): 571-579.e6. DOI: 10.1016/j.jaci.2024.04.027 .
3
Jaishy B, Abel ED. Lipids, lysosomes, and autophagy[J]. J Lipid Res, 2016, 57(9): 1619-1635. PMCID: PMC5003162. DOI: 10.1194/jlr.R067520 .
4
Zuo L, Wijegunawardana D. Redox role of ROS and inflammation in pulmonary diseases[J]. Adv Exp Med Biol, 2021, 1304: 187-204. DOI: 10.1007/978-3-030-68748-9_11 .
5
Chen Y, Checa A, Zhang P, et al. Sphingolipid classes and the interrelationship with pediatric asthma and asthma risk factors[J]. Allergy, 2024, 79(2): 404-418. PMCID: PMC11175620. DOI: 10.1111/all.15942 .
6
Quinn KD, Schedel M, Nkrumah-Elie Y, et al. Dysregulation of metabolic pathways in a mouse model of allergic asthma[J]. Allergy, 2017, 72(9): 1327-1337. DOI: 10.1111/all.13144 .
7
赵蕴伟, 徐意芹, 李爽, 等. 哮喘发作期血清S1P水平对哮喘患者病情严重程度的评估价值[J]. 中华危重病急救医学, 2017, 29(9): 794-798. DOI: 10.3760/cma.j.issn.2095-4352.2017.09.006 .
8
Lejeune S, Kaushik A, Parsons ES, et al. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy[J]. J Allergy Clin Immunol, 2024, 153(2): 418-434. DOI: 10.1016/j.jaci.2023.09.040 .
9
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. DOI: 10.3760/cma.j.cn112147-20200618-00721 .
10
Li WJ, Zhao Y, Gao Y, et al. Lipid metabolism in asthma: immune regulation and potential therapeutic target[J]. Cell Immunol, 2021, 364: 104341. DOI: 10.1016/j.cellimm.2021.104341 .
11
Jia Y, Wang H, Ma B, et al. Lipid metabolism-related genes are involved in the occurrence of asthma and regulate the immune microenvironment[J]. BMC Genomics, 2024, 25(1): 129. PMCID: PMC10832186. DOI: 10.1186/s12864-023-09795-3 .
12
Rago D, Pedersen CT, Huang M, et al. Characteristics and mechanisms of a sphingolipid-associated childhood asthma endotype[J]. Am J Respir Crit Care Med, 2021, 203(7): 853-863. PMCID: PMC8017574. DOI: 10.1164/rccm.202008-3206OC .
13
Pang Z, Wang G, Wang C, et al. Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in Northeast China[J]. Biomed Res Int, 2018, 2018: 2860521. PMCID: PMC6174811. DOI: 10.1155/2018/2860521 .
14
Zhang Q, Xu H, Liu R, et al. A novel strategy for targeted lipidomics based on LC-tandem-MS parameters prediction, quantification, and multiple statistical data mining: evaluation of lysophosphatidylcholines as potential cancer biomarkers[J]. Anal Chem, 2019, 91(5): 3389-3396. DOI: 10.1021/acs.analchem.8b04715 .
15
Lemke G. Phosphatidylserine is the signal for TAM receptors and their ligands[J]. Trends Biochem Sci, 2017, 42(9): 738-748. PMCID: PMC5600686. DOI: 10.1016/j.tibs.2017.06.004 .
16
Kang YP, Lee WJ, Hong JY, et al. Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients[J]. J Proteome Res, 2014, 13(9): 3919-3929. DOI: 10.1021/pr5002059 .
17
Wang S, Tang K, Lu Y, et al. Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics[J]. Clin Chim Acta, 2021, 513: 34-42. DOI: 10.1016/j.cca.2020.11.026 .
18
Wang C, Jiang S, Zhang S, et al. Research progress of metabolomics in asthma[J]. Metabolites, 2021, 11(9): 567. PMCID: PMC8466166. DOI: 10.3390/metabo11090567 .
19
Cala MP, Agulló‐Ortuño MT, Prieto‐García E, et al. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study[J]. J Cachexia Sarcopenia Muscle, 2018, 9(2): 348-357. PMCID: PMC5879957. DOI: 10.1002/jcsm.12270 .
20
Elvas F, Stroobants S, Wyffels L. Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis[J]. Apoptosis, 2017, 22(8): 971-987. DOI: 10.1007/s10495-017-1384-0 .
21
Shinzawa-Itoh K, Sugimura T, Misaki T, et al. Monomeric structure of an active form of bovine cytochrome c oxidase[J]. Proc Natl Acad Sci U S A, 2019, 116(40): 19945-19951. PMCID: PMC6778200 . DOI: 10.1073/pnas.1907183116 .
22
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. PMCID: PMC5506843. DOI: 10.1038/nchembio.2238 .
23
Ried JS, Baurecht H, Stückler F, et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma[J]. Allergy, 2013, 68(5): 629-636. DOI: 10.1111/all.12110 .
24
Pascoe CD, Jha A, Ryu MH, et al. Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction[J]. Eur Respir J, 2021, 57(2): 2000839. DOI: 10.1183/13993003.00839-2020 .
25
Lam M, Bourke JE. Solving the riddle: targeting the imbalance of sphingolipids in asthma to oppose airway hyperresponsiveness[J]. Am J Respir Cell Mol Biol, 2020, 63(5): 555-557. PMCID: PMC7605168. DOI: 10.1165/rcmb.2020-0324ED .
26
Tran TT, Postal BG, Demignot S, et al. Short term palmitate supply impairs intestinal insulin signaling via ceramide production[J]. J Biol Chem, 2016, 291(31): 16328-16338. PMCID: PMC4965580 . DOI: 10.1074/jbc.M115.709626 .
27
James BN, Oyeniran C, Sturgill JL, et al. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma[J]. J Allergy Clin Immunol, 2021, 147(5): 1936-1948.e9. PMCID: PMC8081742. DOI: 10.1016/j.jaci.2020.10.024 .
28
Guo C, Sun L, Zhang L, et al. Serum sphingolipid profile in asthma[J]. J Leukoc Biol, 2021, 110(1): 53-59. DOI: 10.1002/JLB.3MA1120-719R .
29
Jiang T, Dai L, Li P, et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(2): 158853. DOI: 10.1016/j.bbalip.2020.158853 .
30
Georas SN. LPA and autotaxin: potential drug targets in asthma?[J]. Cell Biochem Biophys, 2021, 79(3): 445-448. PMCID: PMC8551058. DOI: 10.1007/s12013-021-01023-7 .
31
Yoder M, Zhuge Y, Yuan Y, et al. Bioactive lysophosphatidylcholine 16∶0 and 18∶0 are elevated in lungs of asthmatic subjects[J]. Allergy Asthma Immunol Res, 2014, 6(1): 61-65. PMCID: PMC3881403. DOI: 10.4168/aair.2014.6.1.61 .
32
Zubeldia-Varela E, Blanco-Pérez F, Barker-Tejeda TC, et al. The impact of high-IgE levels on metabolome and microbiome in experimental allergic enteritis[J]. Allergy, 2024, 79(12): 3430-3447. PMCID: PMC11657046. DOI: 10.1111/all.16202 .
33
Dichlberger A, Schlager S, Kovanen PT, et al. Lipid droplets in activated mast cells: a significant source of triglyceride-derived arachidonic acid for eicosanoid production[J]. Eur J Pharmacol, 2016, 785: 59-69. DOI: 10.1016/j.ejphar.2015.07.020 .

冯特负责研究设计、数据采集分析及论文撰写;谢利娜、张玉会参与数据收集及统计分析工作;郭燕军对研究提供了指导性的贡献。

PDF(684 KB)

Accesses

Citation

Detail

Sections
Recommended

/