Advances in research on gender differences in autism spectrum disorders

JIANG Tong-Tong, LI Xiu-Qiong, ZHAO Ting-Ting, LI Hong-Yu, TANG Qiang

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (4) : 480-486.

PDF(594 KB)
HTML
PDF(594 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (4) : 480-486. DOI: 10.7499/j.issn.1008-8830.2411142
REVIEW

Advances in research on gender differences in autism spectrum disorders

  • JIANG Tong-Tong, LI Xiu-Qiong, ZHAO Ting-Ting, LI Hong-Yu, TANG Qiang
Author information +
History +

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social impairments, repetitive behaviors, and restricted interests. Studies have shown that it is more prevalent in males than females. Although this issue has attracted academic attention since the 20th century, the specific mechanisms underlying the gender differences in ASD remain unclear. This paper reviews the impact of gender differences in ASD, focusing on the female protective effect, DNA methylation, hormone levels, and clinical manifestations. It also discusses corresponding treatment options, particularly suggesting improvements in the diagnostic process, which is often overlooked, in order to provide valuable references for the clinical diagnosis and treatment of ASD.

Key words

Autism spectrum disorder / Gender difference / Female protective effect / Genetics / Hormone level / Epigenetics / DNA methylation

Cite this article

Download Citations
JIANG Tong-Tong, LI Xiu-Qiong, ZHAO Ting-Ting, LI Hong-Yu, TANG Qiang. Advances in research on gender differences in autism spectrum disorders[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(4): 480-486 https://doi.org/10.7499/j.issn.1008-8830.2411142

References

1 Feng Y, Huang X, Zhao W, et al. Association among internalizing problems, white matter integrity, and social difficulties in children with autism spectrum disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 135: 111109. PMID: 39074528. DOI: 10.1016/j.pnpbp.2024.111109.
2 Li YA, Chen ZJ, Li XD, et al. Epidemiology of autism spectrum disorders: global burden of disease 2019 and bibliometric analysis of risk factors[J]. Front Pediatr, 2022, 10: 972809. PMID: 36545666. PMCID: PMC9760802. DOI: 10.3389/fped.2022.972809.
3 Kang L, Liu J, Liu Y, et al. Global, regional, and national disease burden of autism spectrum disorder among children under 5 years from 1990 to 2019: an analysis for the Global Burden of Disease 2019 Study[J]. Asian J Psychiatr, 2023, 79: 103359. PMID: 36462389. DOI: 10.1016/j.ajp.2022.103359.
4 Klei L, McClain LL, Mahjani B, et al. How rare and common risk variation jointly affect liability for autism spectrum disorder[J]. Mol Autism, 2021, 12(1): 66. PMID: 34615521. PMCID: PMC8495987. DOI: 10.1186/s13229-021-00466-2.
5 Zhang Y, Li N, Li C, et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect[J]. Transl Psychiatry, 2020, 10(1): 4. PMID: 32066658. PMCID: PMC7026157. DOI: 10.1038/s41398-020-0699-8.
6 Husson T, Lecoquierre F, Cassinari K, et al. Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and practical use[J]. Transl Psychiatry, 2020, 10(1): 77. PMID: 32094338. PMCID: PMC7039996. DOI: 10.1038/s41398-020-0760-7.
7 Dougherty JD, Marrus N, Maloney SE, et al. Can the "female protective effect" liability threshold model explain sex differences in autism spectrum disorder?[J]. Neuron, 2022, 110(20): 3243-3262. PMID: 35868305. PMCID: PMC9588569. DOI: 10.1016/j.neuron.2022.06.020.
8 Wigdor EM, Weiner DJ, Grove J, et al. The female protective effect against autism spectrum disorder[J]. Cell Genom, 2022, 2(6): 100134. PMID: 36778135. PMCID: PMC9903803. DOI: 10.1016/j.xgen.2022.100134.
9 Xiao J, Gao Y, Yu Y, et al. Associations of parental birth characteristics with autism spectrum disorder (ASD) risk in their offspring: a population-based multigenerational cohort study in Denmark[J]. Int J Epidemiol, 2021, 50(2): 485-495. PMID: 33411909. PMCID: PMC8128455. DOI: 10.1093/ije/dyaa246.
10 Chen J, Han Z, Wang Z, et al. Identification of immune traits associated with neurodevelopmental disorders by two-sample Mendelian randomization analysis[J]. BMC Psychiatry, 2024, 24(1): 728. PMID: 39448971. PMCID: PMC11515564. DOI: 10.1186/s12888-024-06148-6.
11 Liu WS. Mammalian sex chromosome structure, gene content, and function in male fertility[J]. Annu Rev Anim Biosci, 2019, 7: 103-124. PMID: 30412673. DOI: 10.1146/annurev-animal-020518-115332.
12 Kalayci A, Agirbasli D, Serdengecti N, et al. A new case with coexistence of mosaic 48, XYYY/47, XYY, and CACNA1E variant in autism spectrum disorder[J]. Psychiatr Genet, 2024, 34(6): 134-139. PMID: 39526683. DOI: 10.1097/YPG.0000000000000378.
13 Kharrat M, Issa AB, Tlili A, et al. A novel mutation in the MAP7D3 gene in two siblings with severe intellectual disability and autistic traits: concurrent assessment of BDNF functional polymorphism, X-inactivation and oxidative stress to explain disease severity[J]. J Mol Neurosci, 2023, 73(9-10): 853-864. PMID: 37817054. DOI: 10.1007/s12031-023-02163-6.
14 Nguyen TA, Lehr AW, Roche KW. Neuroligins and neurodevelopmental disorders: X-linked genetics[J]. Front Synaptic Neurosci, 2020, 12: 33. PMID: 32848696. PMCID: PMC7431521. DOI: 10.3389/fnsyn.2020.00033.
15 郑丽君, 钟萍, 王忠福, 等. 基于基因芯片检测的动脉粥样硬化性心血管疾病高风险人群相关基因分析[J]. 临床心血管病杂志, 2022, 38(10): 796-800. DOI: 10.13201/j.issn.1001-1439.2022.10.008.
16 Gerges P, Bitar T, Laumonnier F, et al. Identification of novel gene variants for autism spectrum disorders in the Lebanese population using whole-exome sequencing[J]. Genes (Basel), 2022, 13(2): 186. PMID: 35205231. PMCID: PMC8871811. DOI: 10.3390/genes13020186.
17 de Mendoza A. A mammalian DNA methylation landscape[J]. Science, 2023, 381(6658): 602-603. PMID: 37561871. DOI: 10.1126/science.adj4904.
18 Bam S, Buchanan E, Mahony C, et al. DNA methylation of PGC-1α is associated with elevated mtDNA copy number and altered urinary metabolites in autism spectrum disorder[J]. Front Cell Dev Biol, 2021, 9: 696428. PMID: 34381777. PMCID: PMC8352569. DOI: 10.3389/fcell.2021.696428.
19 Ravaei A, Emanuele M, Nazzaro G, et al. Placental DNA methylation profile as predicting marker for autism spectrum disorder (ASD)[J]. Mol Med, 2023, 29(1): 8. PMID: 36647002. PMCID: PMC9843962. DOI: 10.1186/s10020-022-00593-3.
20 Morales-Marín ME, Castro Martínez XH, Centeno Cruz F, et al. Differential DNA methylation from autistic children enriches evidence for genes associated with ASD and new candidate genes[J]. Brain Sci, 2023, 13(10): 1420. PMID: 37891789. PMCID: PMC10605446. DOI: 10.3390/brainsci13101420.
21 Nardone S, Sams DS, Zito A, et al. Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder[J]. Cereb Cortex, 2017, 27(12): 5739-5754. PMID: 29028941. PMCID: PMC6346295. DOI: 10.1093/cercor/bhx250.
22 刘磊, 许婵娟, 范治然, 等. GABAB受体基因突变和神经疾病研究进展[J]. 现代生物医学进展, 2019, 19(6): 1172-1175. DOI: 10.13241/j.cnki.pmb.2019.06.038.
23 Hedges DJ, Hamilton-Nelson KL, Sacharow SJ, et al. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci[J]. Mol Autism, 2012, 3: 2. PMID: 22472195. PMCID: PMC3352055. DOI: 10.1186/2040-2392-3-2.
24 Meyer-Bockenkamp F, Proskynitopoulos PJ, Glahn A, et al. Cytosine methylation in GABA B1 receptor identifies alcohol-related changes for men in blood and brain tissues[J]. Alcohol Alcohol, 2023, 58(3): 308-314. PMID: 37041103. DOI: 10.1093/alcalc/agad022.
25 Yogeswara IBA, Maneerat S, Haltrich D. Glutamate decarboxylase from lactic acid bacteria: a key enzyme in GABA synthesis[J]. Microorganisms, 2020, 8(12): 1923. PMID: 33287375. PMCID: PMC7761890. DOI: 10.3390/microorganisms8121923.
26 Pearson G, Song C, Hohmann S, et al. DNA methylation profiles of GAD1 in human cerebral organoids of autism indicate disrupted epigenetic regulation during early development[J]. Int J Mol Sci, 2022, 23(16): 9188. PMID: 36012452. PMCID: PMC9408997. DOI: 10.3390/ijms23169188.
27 Bahado-Singh RO, Vishweswaraiah S, Aydas B, et al. Placental DNA methylation changes and the early prediction of autism in full-term newborns[J]. PLoS One, 2021, 16(7): e0253340. PMID: 34260616. PMCID: PMC8279352. DOI: 10.1371/journal.pone.0253340.
28 Kratsman N, Getselter D, Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model[J]. Neuropharmacology, 2016, 102: 136-145. PMID: 26577018. DOI: 10.1016/j.neuropharm.2015.11.003.
29 吴媛, 杨亭, 陈红羽, 等. 学龄前孤独症谱系障碍儿童血清叶酸、维生素B12水平及其与神经发育特征的关联[J]. 中国当代儿科杂志, 2024, 26(4): 371-377. PMID: 38660901. PMCID: PMC11057295. DOI: 10.7499/j.issn.1008-8830.2310091.
30 周丽芳, 陈艾. ω-3脂肪酸对自闭症谱系障碍患儿干预效果的Meta分析[J]. 儿科药学杂志, 2023, 29(10): 28-34. DOI: 10.13407/j.cnki.jpp.1672-108X.2023.010.009.
31 Auyeung B, Baron-Cohen S, Ashwin E, et al. Fetal testosterone and autistic traits[J]. Br J Psychol, 2009, 100(Pt 1): 1-22. PMID: 18547459. DOI: 10.1348/000712608X311731.
32 Wang Z, Zhang B, Mu C, et al. Androgen levels in autism spectrum disorders: a systematic review and meta-analysis[J]. Front Endocrinol (Lausanne), 2024, 15: 1371148. PMID: 38779452. PMCID: PMC11109388. DOI: 10.3389/fendo.2024.1371148.
33 Kung KT, Spencer D, Pasterski V, et al. No relationship between prenatal androgen exposure and autistic traits: convergent evidence from studies of children with congenital adrenal hyperplasia and of amniotic testosterone concentrations in typically developing children[J]. J Child Psychol Psychiatry, 2016, 57(12): 1455-1462. PMID: 27460188. PMCID: PMC6100761. DOI: 10.1111/jcpp.12602.
34 Lombardo MV, Ashwin E, Auyeung B, et al. Fetal testosterone influences sexually dimorphic gray matter in the human brain[J]. J Neurosci, 2012, 32(2): 674-680. PMID: 22238103. PMCID: PMC3306238. DOI: 10.1523/JNEUROSCI.4389-11.2012.
35 高鑫涛, 刘夏铭, 丁凤菲, 等. 雄激素调控男性性唤起作用机制的研究进展[J]. 中华男科学杂志, 2021, 27(9): 833-839. DOI: 10.13263/j.cnki.nja.2021.09.011.
36 Reyes-Madrigal F, González-Manríquez L, Martínez de Velasco F, et al. Prefrontal γ-aminobutyric acid levels in never-medicated individuals with chronic schizophrenia[J]. JAMA Psychiatry, 2023, 80(10): 1075-1077. PMID: 37647037. PMCID: PMC10469276. DOI: 10.1001/jamapsychiatry.2023.3157.
37 Szawka RE, Campideli-Santana AC. Androgen receptors in GABA neurons are required for increased GABAergic input to GnRH neurons but not PCOS symptoms[J]. Endocrinology, 2024, 165(10): bqae105. PMID: 39138908. DOI: 10.1210/endocr/bqae105.
38 Noviyanti NI, Gusriani, Ruqaiyah, et al. The effect of estrogen hormone on premenstrual syndrome (PMS) occurrences in teenage girls at Pesantren Darul Arqam Makassar[J]. Gac Sanit, 2021, 35 Suppl 2: S571-S575. PMID: 34929904. DOI: 10.1016/j.gaceta.2021.10.103.
39 Groenman AP, Torenvliet C, Radhoe TA, et al. Menstruation and menopause in autistic adults: periods of importance?[J]. Autism, 2022, 26(6): 1563-1572. PMID: 34825585. PMCID: PMC9344571. DOI: 10.1177/13623613211059721.
40 Sivasangari K, Rajan KE. Prenatal exposure to valproic acid alters Reelin, NGF expressing neuron architecture and impairs social interaction in their autistic-like phenotype male offspring[J]. Exp Brain Res, 2022, 240(7-8): 2005-2016. PMID: 35648200. DOI: 10.1007/s00221-022-06386-8.
41 Zanini BM, de Avila BM, Garcia DN, et al. Dynamics of serum exosome microRNA profile altered by chemically induced estropause and rescued by estrogen therapy in female mice[J]. GeroScience, 2024, 46(6): 5891-5909. PMID: 38499957. PMCID: PMC11493931. DOI: 10.1007/s11357-024-01129-9.
42 Bhatia S, Bodenstein D, Cheng AP, et al. Altered epigenetic marks and gene expression in fetal brain, and postnatal behavioural disorders, following prenatal exposure of Ogg1 knockout mice to saline or ethanol[J]. Cells, 2023, 12(18): 2308. PMID: 37759530. PMCID: PMC10527575. DOI: 10.3390/cells12182308.
43 Sánchez-Lafuente CL, Johnston JN, Reive BS, et al. A single intravenous reelin injection restores corticosterone-induced neurochemical and behavioral alterations in dams during the post-partum period[J]. Front Mol Neurosci, 2024, 17: 1442332. PMID: 39228796. PMCID: PMC11369980. DOI: 10.3389/fnmol.2024.1442332.
44 Cagnacci A, Gazzo I, Stigliani S, et al. Oxidative stress: the role of estrogen and progesterone[J]. J Clin Med, 2023, 12(23): 7304. PMID: 38068356. PMCID: PMC10707316. DOI: 10.3390/jcm12237304.
45 Hu T, Dong Y, He C, et al. The gut microbiota and oxidative stress in autism spectrum disorders (ASD)[J]. Oxid Med Cell Longev, 2020, 2020: 8396708. PMID: 33062148. PMCID: PMC7547345. DOI: 10.1155/2020/8396708.
46 Gasser BA, Kurz J, Senn W, et al. Stress-induced alterations of social behavior are reversible by antagonism of steroid hormones in C57/BL6 mice[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(1): 127-135. PMID: 32894324. PMCID: PMC7778626. DOI: 10.1007/s00210-020-01970-7.
47 王红莲, 王宁宁, 褚定军. 抗前列腺癌雄激素受体拮抗剂研究进展及市场分析[J]. 药学进展, 2023, 47(8): 617-625. DOI: 10.20053/j.issn1001-5094.2023.08.006.
48 Allemailem KS, Almatroudi A, Alharbi HOA, et al. Apigenin: a bioflavonoid with a promising role in disease prevention and treatment[J]. Biomedicines, 2024, 12(6): 1353. PMID: 38927560. PMCID: PMC11202028. DOI: 10.3390/biomedicines12061353.
49 Bai C, Zheng Y, Tian L, et al. Structure-based developmental toxicity and ASD-phenotypes of bisphenol A analogues in embryonic zebrafish[J]. Ecotoxicol Environ Saf, 2023, 253: 114643. PMID: 36805134. DOI: 10.1016/j.ecoenv.2023.114643.
50 Rea V, Van Raay TJ. Using zebrafish to model autism spectrum disorder: a comparison of ASD risk genes between zebrafish and their mammalian counterparts[J]. Front Mol Neurosci, 2020, 13: 575575. PMID: 33262688. PMCID: PMC7686559. DOI: 10.3389/fnmol.2020.575575.
51 Zhao LL, Jayeoye TJ, Ashaolu TJ, et al. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats[J]. Tissue Cell, 2023, 85: 102254. PMID: 37866152. DOI: 10.1016/j.tice.2023.102254.
52 Supekar K, de Los Angeles C, Ryali S, et al. Deep learning identifies robust gender differences in functional brain organization and their dissociable links to clinical symptoms in autism[J]. Br J Psychiatry, 2022, 220(4): 202-209. PMID: 35164888. PMCID: PMC9376194. DOI: 10.1192/bjp.2022.13.
53 Murphy DG, Beecham J, Craig M, et al. Autism in adults. New biologicial findings and their translational implications to the cost of clinical services[J]. Brain Res, 2011, 1380: 22-33. PMID: 20969835. DOI: 10.1016/j.brainres.2010.10.042.
54 Amodeo DA, Pahua AE, Zarate M, et al. Differences in the expression of restricted repetitive behaviors in female and male BTBR T+tf/J mice[J]. Behav Brain Res, 2019, 372: 112028. PMID: 31212059. DOI: 10.1016/j.bbr.2019.112028.
55 Masoudi M, Maasoumi R, Effatpanah M, et al. Exploring experiences of psychological distress among Iranian parents in dealing with the sexual behaviors of their children with autism spectrum disorder: a qualitative study[J]. J Med Life, 2022, 15(1): 26-33. PMID: 35186133. PMCID: PMC8852642. DOI: 10.25122/jml-2021-0290.
56 Chu JH, Bian F, Yan RY, et al. Comparison of diagnostic validity of two autism rating scales for suspected autism in a large Chinese sample[J]. World J Clin Cases, 2022, 10(4): 1206-1216. PMID: 35211554. PMCID: PMC8855175. DOI: 10.12998/wjcc.v10.i4.1206.
57 Gesi C, Migliarese G, Torriero S, et al. Gender differences in misdiagnosis and delayed diagnosis among adults with autism spectrum disorder with no language or intellectual disability[J]. Brain Sci, 2021, 11(7): 912. PMID: 34356146. PMCID: PMC8306851. DOI: 10.3390/brainsci11070912.
PDF(594 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/