Application of intelligent oxygen management system in neonatal intensive care units: a scoping review

Huan HE, Qiu-Yi SUN, Ying TANG, Jin-Li DAI, Han-Xin ZHANG, Hua-Yun HE

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (6) : 753-758.

PDF(601 KB)
PDF(601 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (6) : 753-758. DOI: 10.7499/j.issn.1008-8830.2412081
REVIEW

Application of intelligent oxygen management system in neonatal intensive care units: a scoping review

Author information +
History +

Abstract

The intelligent oxygen management system is a software designed with various algorithms to automatically titrate inhaled oxygen concentration according to specific patterns. This system can be integrated into various ventilator devices and used during assisted ventilation processes, aiming to maintain the patient's blood oxygen saturation within a target range. This paper employs a scoping review methodology, focusing on research related to intelligent oxygen management systems in neonatal intensive care units. It reviews the fundamental principles, application platforms, and clinical outcomes of these systems, providing a theoretical basis for clinical implementation.

Key words

Oxygen inhalation / Automatic oxygen titration / Intelligent oxygen management / Preterm infant

Cite this article

Download Citations
Huan HE , Qiu-Yi SUN , Ying TANG , et al . Application of intelligent oxygen management system in neonatal intensive care units: a scoping review[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(6): 753-758 https://doi.org/10.7499/j.issn.1008-8830.2412081

References

1
Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants[J]. Cochrane Database Syst Rev, 2017, 4(4): CD011190. PMCID: PMC6478245. DOI: 10.1002/14651858.CD011190.pub2 .
2
Di Fiore JM, Bloom JN, Orge F, et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity[J]. J Pediatr, 2010, 157(1): 69-73. PMCID: PMC4428609. DOI: 10.1016/j.jpeds.2010.01.046 .
3
Ford SP, Leick-Rude MK, Meinert KA, et al. Overcoming barriers to oxygen saturation targeting[J]. Pediatrics, 2006, 118 : S177-S186. DOI: 10.1542/peds.2006-0913P .
Suppl 2
4
Sink DW, Hope SA, Hagadorn JI. Nurse:patient ratio and achievement of oxygen saturation goals in premature infants[J]. Arch Dis Child Fetal Neonatal Ed, 2011, 96(2): F93-F98. DOI: 10.1136/adc.2009.178616 .
5
Sturrock S, Williams E, Dassios T, et al. Closed loop automated oxygen control in neonates: a review[J]. Acta Paediatr, 2020, 109(5): 914-922. DOI: 10.1111/apa.15089 .
6
Colquhoun HL, Levac D, O'Brien KK, et al. Scoping reviews: time for clarity in definition, methods, and reporting[J]. J Clin Epidemiol, 2014, 67(12): 1291-1294. DOI: 10.1016/j.jclinepi.2014.03.013 .
7
Peters MDJ, Marnie C, Tricco AC, et al. Updated methodological guidance for the conduct of scoping reviews[J]. JBI Evid Implement, 2021, 19(1): 3-10. DOI: 10.1097/XEB.0000000000000277 .
8
Kaltsogianni O, Dassios T, Harris C, et al. Closed-loop oxygen system in late preterm/term, ventilated infants with different severities of respiratory disease[J]. Acta Paediatr, 2023, 112(6): 1185-1189. DOI: 10.1111/apa.16678 .
9
Dijkman KP, Goos TG, Dieleman JP, et al. Predictive intelligent control of oxygenation in preterm infants: a two-center feasibility study[J]. Neonatology, 2023, 120(2): 235-241. DOI: 10.1159/000527539 .
10
Schwarz CE, Kreutzer KB, Langanky L, et al. Randomised crossover trial comparing algorithms and averaging times for automatic oxygen control in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2022, 107(4): 425-430. DOI: 10.1136/archdischild-2021-322096 .
11
Dargaville PA, Marshall AP, Ladlow OJ, et al. Automated control of oxygen titration in preterm infants on non-invasive respiratory support[J]. Arch Dis Child Fetal Neonatal Ed, 2022, 107(1): 39-44. DOI: 10.1136/archdischild-2020-321538 .
12
Dijkman KP, Mohns T, Dieleman JP, et al. Predictive intelligent control of oxygenation (PRICO) in preterm infants on high flow nasal cannula support: a randomised cross-over study[J]. Arch Dis Child Fetal Neonatal Ed, 2021, 106(6): 621-626. DOI: 10.1136/archdischild-2020-320728 .
13
Dani C, Pratesi S, Luzzati M, et al. Cerebral and splanchnic oxygenation during automated control of inspired oxygen (FiO2) in preterm infants[J]. Pediatr Pulmonol, 2021, 56(7): 2067-2072. DOI: 10.1002/ppul.25379 .
14
Sturrock S, Ambulkar H, Williams EE, et al. A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants[J]. Acta Paediatr, 2021, 110(3): 833-837. DOI: 10.1111/apa.15585 .
15
Schwarz CE, Kidszun A, Bieder NS, et al. Is faster better? A randomised crossover study comparing algorithms for closed-loop automatic oxygen control[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(4): 369-374. DOI: 10.1136/archdischild-2019-317029 .
16
Reynolds PR, Miller TL, Volakis LI, et al. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(4): F366-F371. DOI: 10.1136/archdischild-2018-315342 .
17
Gajdos M, Waitz M, Mendler MR, et al. Effects of a new device for automated closed loop control of inspired oxygen concentration on fluctuations of arterial and different regional organ tissue oxygen saturations in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(4): F360-F365. DOI: 10.1136/archdischild-2018-314769 .
18
Van Zanten HA, Kuypers KLAM, Stenson BJ, et al. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(5): F395-F399. DOI: 10.1136/archdischild-2016-312172 .
19
Plottier GK, Wheeler KI, Ali SK, et al. Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(1): F37-F43. DOI: 10.1136/archdischild-2016-310647 .
20
Lal M, Tin W, Sinha S. Automated control of inspired oxygen in ventilated preterm infants: crossover physiological study[J]. Acta Paediatr, 2015, 104(11): 1084-1089. DOI: 10.1111/apa.13137 .
21
van Kaam AH, Hummler HD, Wilinska M, et al. Automated versus manual oxygen control with different saturation targets and modes of respiratory support in preterm infants[J]. J Pediatr, 2015, 167(3): 545-550.e2. DOI: 10.1016/j.jpeds.2015.06.012 .
22
Waitz M, Schmid MB, Fuchs H, et al. Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations[J]. J Pediatr, 2015, 166(2): 240-244.e1. DOI: 10.1016/j.jpeds.2014.10.007 .
23
Hallenberger A, Poets CF, Horn W, et al. Closed-loop automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial[J]. Pediatrics, 2014, 133(2): e379-e385. DOI: 10.1542/peds.2013-1834 .
24
Hütten MC, Goos TG, Ophelders D, et al. Fully automated predictive intelligent control of oxygenation (PRICO) in resuscitation and ventilation of preterm lambs[J]. Pediatr Res, 2015, 78(6): 657-663. DOI: 10.1038/pr.2015.158 .
25
Marshall A, Ladlow OJ, Bannink C, et al. Apnoea-triggered increase in fraction of inspired oxygen in preterm infants: a randomised cross-over study[J]. Arch Dis Child Fetal Neonatal Ed, 2023, 109(1): 81-86. DOI: 10.1136/archdischild-2023-325849 .
26
Mitra S, Singh B, El-Naggar W, et al. Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: a systematic review and meta-analysis[J]. J Perinatol, 2018, 38(4): 351-360. DOI: 10.1038/s41372-017-0037-z .
27
Salverda HH, Oldenburger NNJ, Rijken M, et al. Automated oxygen control for very preterm infants and neurodevelopmental outcome at 2 years: a retrospective cohort study[J]. Eur J Pediatr, 2023, 182(4): 1593-1599. PMCID: PMC10167103. DOI: 10.1007/s00431-023-04809-4 .
28
Salverda HH, Oldenburger NJ, Rijken M, et al. The effect of automated oxygen control on clinical outcomes in preterm infants: a pre- and post-implementation cohort study[J]. Eur J Pediatr, 2021, 180(7): 2107-2113. PMCID: PMC7899794. DOI: 10.1007/s00431-021-03982-8 .
29
König J, Stauch A, Engel C, et al. Statistical analysis plan for the FiO2-C trial: effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO2-C) on outcomes of extremely preterm infants: a randomized-controlled parallel group multicentre trial for safety and efficacy[J]. Trials, 2024, 25(1): 756. PMCID: PMC11559155. DOI: 10.1186/s13063-024-08615-7 .
30
Poder TG, Kouakou CRC, Bouchard PA, et al. Cost-effectiveness of FreeO2 in patients with chronic obstructive pulmonary disease hospitalised for acute exacerbations: analysis of a pilot study in Quebec[J]. BMJ Open, 2018, 8(1): e018835. PMCID: PMC5786115. DOI: 10.1136/bmjopen-2017-018835 .

何欢负责文献检索及筛选、文章构思、撰写和修改;孙秋怡参与文献检索及筛选、文章修改;唐莹参与文献筛选及信息提取;代金丽参与文献信息汇总;张瀚鑫提供呼吸机相关理论知识指导及论文审校;何华云负责论文修改及审校。

PDF(601 KB)

Accesses

Citation

Detail

Sections
Recommended

/