Research progress on the cGAS-STING signaling pathway in immune-mediated inflammatory diseases in children

Xin-Yue WEI, Xiao-Juan GONG, Hong JI

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (7) : 881-887.

PDF(610 KB)
PDF(610 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (7) : 881-887. DOI: 10.7499/j.issn.1008-8830.2412098
REVIEW

Research progress on the cGAS-STING signaling pathway in immune-mediated inflammatory diseases in children

Author information +
History +

Abstract

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway is a crucial component of the immune system. It detects abnormal cytosolic double-stranded DNA and promotes the expression of type I interferons and other inflammatory factors, thereby protecting the body from pathogenic infections. In children, an immature immune system or genetic mutations can lead to immune dysregulation, increasing the risk of autoimmune diseases (AID) and autoinflammatory diseases. Recent studies have shown that aberrant activation of the cGAS-STING signaling pathway is associated with the development of AID and autoinflammatory diseases in children. This review summarizes the research progress on the cGAS-STING signaling pathway in childhood AID and autoinflammatory diseases, aiming to provide new directions for clinical diagnosis and treatment.

Key words

Cyclic GMP-AMP synthase / Stimulator of interferon gene / Signaling pathway / Autoimmune disease / autoinflammatory diseases / Child

Cite this article

Download Citations
Xin-Yue WEI , Xiao-Juan GONG , Hong JI. Research progress on the cGAS-STING signaling pathway in immune-mediated inflammatory diseases in children[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(7): 881-887 https://doi.org/10.7499/j.issn.1008-8830.2412098

References

[1]
钱嘉航, 任军, 贾凌云, 等. 自身免疫性疾病与自身抗体概述[J]. 中国免疫学杂志, 2022, 38(17): 2152-2158. DOI: 10.3969/j.issn.1000-484X.2022.17.021 .
[2]
中华医学会儿科学分会风湿病学组, 中国医师协会风湿免疫科医师分会儿科学组, 海峡两岸医药卫生交流协会风湿免疫病学专业委员会儿童学组, 等. 儿童自身炎症性疾病诊断与治疗专家共识[J]. 中华实用儿科临床杂志, 2022, 37(3): 161-172. DOI: 10.3760/cma.j.cn101070-20211109-01333 .
[3]
Hu Y, Chen B, Yang F, et al. Emerging role of the cGAS-STING signaling pathway in autoimmune diseases: biologic function, mechanisms and clinical prospection[J]. Autoimmun Rev, 2022, 21(9): 103155. DOI: 10.1016/j.autrev.2022.103155 .
[4]
Zheng W, Chen N, Meurens F, et al. How does cGAS avoid sensing self-DNA under normal physiological conditions?[J]. Int J Mol Sci, 2023, 24(19): 14738. PMCID: PMC10572901. DOI: 10.3390/ijms241914738 .
[5]
Cheng F, Su T, Liu Y, et al. Targeting lymph nodes for systemic immunosuppression using cell-free-DNA-scavenging and cGAS-inhibiting nanomedicine-in-hydrogel for rheumatoid arthritis immunotherapy[J]. Adv Sci (Weinh), 2023, 10(26): e2302575. PMCID: PMC10502670. DOI: 10.1002/advs.202302575 .
[6]
Wischnewski M, Ablasser A. Interplay of cGAS with chromatin[J]. Trends Biochem Sci, 2021, 46(10): 822-831. DOI: 10.1016/j.tibs.2021.05.011 .
[7]
Talbot EJ, Joshi L, Thornton P, et al. cGAS-STING signalling regulates microglial chemotaxis in genome instability[J]. Nucleic Acids Res, 2024, 52(3): 1188-1206. PMCID: PMC10853792. DOI: 10.1093/nar/gkad1184 .
[8]
Gao D, Li T, Li XD, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases[J]. Proc Natl Acad Sci U S A, 2015, 112(42): E5699-E5705. PMCID: PMC4620884. DOI: 10.1073/pnas.1516465112 .
[9]
Bai J, Liu F. Nuclear cGAS: sequestration and beyond[J]. Protein Cell, 2022, 13(2): 90-101. PMCID: PMC8783940. DOI: 10.1007/s13238-021-00869-0 .
[10]
Xie W, Lama L, Adura C, et al. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation[J]. Proc Natl Acad Sci U S A, 2019, 116(24): 11946-11955. PMCID: PMC6575157 . DOI: 10.1073/pnas.1905013116 .
[11]
Dvorkin S, Cambier S, Volkman HE, et al. New frontiers in the cGAS-STING intracellular DNA-sensing pathway[J]. Immunity, 2024, 57(4): 718-730. PMCID: PMC11013568. DOI: 10.1016/j.immuni.2024.02.019 .
[12]
Ritchie C, Carozza JA, Li L. Biochemistry, cell biology, and pathophysiology of the innate immune cGAS-cGAMP-STING pathway[J]. Annu Rev Biochem, 2022, 91: 599-628. DOI: 10.1146/annurev-biochem-040320-101629 .
[13]
Liu H, Wang F, Cao Y, et al. The multifaceted functions of cGAS[J]. J Mol Cell Biol, 2022, 14(5): mjac031. PMCID: PMC9475664. DOI: 10.1093/jmcb/mjac031 .
[14]
Shinde O, Li P. The molecular mechanism of dsDNA sensing through the cGAS-STING pathway[J]. Adv Immunol, 2024, 162: 1-21. DOI: 10.1016/bs.ai.2024.02.003 .
[15]
Hooy RM, Massaccesi G, Rousseau KE, et al. Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS[J]. Nucleic Acids Res, 2020, 48(8): 4435-4447. PMCID: PMC7192592. DOI: 10.1093/nar/gkaa084 .
[16]
Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway[J]. Immunity, 2020, 53(1): 43-53. DOI: 10.1016/j.immuni.2020.05.013 .
[17]
Liu Y, Lu X, Qin N, et al. STING, a promising target for small molecular immune modulator: a review[J]. Eur J Med Chem, 2021, 211: 113113. DOI: 10.1016/j.ejmech.2020.113113 .
[18]
Shang G, Zhang C, Chen ZJ, et al. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP[J]. Nature, 2019, 567(7748): 389-393. PMCID: PMC6859894. DOI: 10.1038/s41586-019-0998-5 .
[19]
Reisländer T, Groelly FJ, Tarsounas M. DNA damage and cancer immunotherapy: a STING in the tale[J]. Mol Cell, 2020, 80(1): 21-28. DOI: 10.1016/j.molcel.2020.07.026 .
[20]
Guerini D. STING agonists/antagonists: their potential as therapeutics and future developments[J]. Cells, 2022, 11(7): 1159. PMCID: PMC8998017. DOI: 10.3390/cells11071159 .
[21]
Decout A, Katz JD, Venkatraman S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569. PMCID: PMC8029610. DOI: 10.1038/s41577-021-00524-z .
[22]
Yang Y, Huang Y, Zeng Z. Advances in cGAS-STING signaling pathway and diseases[J]. Front Cell Dev Biol, 2022, 10: 800393. PMCID: PMC8851069. DOI: 10.3389/fcell.2022.800393 .
[23]
Downton P, Bagnall JS, England H, et al. Overexpression of IκBα modulates NF-κB activation of inflammatory target gene expression[J]. Front Mol Biosci, 2023, 10: 1187187. PMCID: PMC10203502. DOI: 10.3389/fmolb.2023.1187187 .
[24]
Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee[J]. J Clin Immunol, 2022, 42(7): 1473-1507. PMCID: PMC9244088. DOI: 10.1007/s10875-022-01289-3 .
[25]
Harry O, Crosby LE, Smith AW, et al. Self-management and adherence in childhood-onset systemic lupus erythematosus: what are we missing?[J]. Lupus, 2019, 28(5): 642-650. PMCID: PMC6506349. DOI: 10.1177/0961203319839478 .
[26]
Massias JS, Smith EMD, Al-Abadi E, et al. Clinical and laboratory characteristics in juvenile-onset systemic lupus erythematosus across age groups[J]. Lupus, 2020, 29(5): 474-481. PMCID: PMC7528537. DOI: 10.1177/0961203320909156 .
[27]
Parperis K, Psarelis S, Chatzittofis A, et al. Association of clinical characteristics, disease activity and health-related quality of life in SLE patients with major depressive disorder[J]. Rheumatology (Oxford), 2021, 60(11): 5369-5378. DOI: 10.1093/rheumatology/keab123 .
[28]
Zhang C, Deng Z, Wu J, et al. HO-1 impairs the efficacy of radiotherapy by redistributing cGAS and STING in tumors[J]. J Clin Invest, 2024, 134(23): e181044. PMCID: PMC11601901. DOI: 10.1172/JCI181044 .
[29]
Tesser A, Piperno GM, Pin A, et al. Priming of the cGAS-STING-TBK1 pathway enhances LPS-induced release of type I interferons[J]. Cells, 2021, 10(4): 785. PMCID: PMC8067196. DOI: 10.3390/cells10040785 .
[30]
Wobma H, Shin DS, Chou J, et al. Dysregulation of the cGAS-STING pathway in monogenic autoinflammation and lupus[J]. Front Immunol, 2022, 13: 905109. PMCID: PMC9186411. DOI: 10.3389/fimmu.2022.905109 .
[31]
An J, Durcan L, Karr RM, et al. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2017, 69(4): 800-807. DOI: 10.1002/art.40002 .
[32]
Ding L, Dong G, Zhang D, et al. The regional function of cGAS/STING signal in multiple organs: one of culprit behind systemic lupus erythematosus?[J]. Med Hypotheses, 2015, 85(6): 846-849. DOI: 10.1016/j.mehy.2015.09.026 .
[33]
Mahdaviani S, Higgins GC, Kerr NC. Orbital pseudotumor in a child with juvenile rheumatoid arthritis[J]. J Pediatr Ophthalmol Strabismus, 2005, 42(3): 185-188. DOI: 10.3928/01913913-20050501-09 .
[34]
Sabounji MM, Lissimo H, Deme A. Childhood-onset rheumatoid arthritis at a tertiary hospital in Senegal, West Africa[J]. Pediatr Rheumatol Online J, 2023, 21(1): 98. PMCID: PMC10496368. DOI: 10.1186/s12969-023-00889-6 .
[35]
Szekanecz Z, McInnes IB, Schett G, et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases[J]. Nat Rev Rheumatol, 2021, 17(10): 585-595. DOI: 10.1038/s41584-021-00652-9 .
[36]
Zhu Q, Zhou H. The role of cGAS-STING signaling in rheumatoid arthritis: from pathogenesis to therapeutic targets[J]. Front Immunol, 2024, 15: 1466023. PMCID: PMC11461283. DOI: 10.3389/fimmu.2024.1466023 .
[37]
Barker BR, Taxman DJ, Ting JP. Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines[J]. Curr Opin Immunol, 2011, 23(5): 591-597. PMCID: PMC3380339. DOI: 10.1016/j.coi.2011.07.005 .
[38]
Kim JW, Ahn MH, Jung JY, et al. An update on the pathogenic role of neutrophils in systemic juvenile idiopathic arthritis and adult-onset Still's disease[J]. Int J Mol Sci, 2021, 22(23): 13038. PMCID: PMC8657670. DOI: 10.3390/ijms222313038 .
[39]
Drougkas K, Skarlis C, Mavragani C. Type I interferons in systemic autoimmune rheumatic diseases: pathogenesis, clinical features and treatment options[J]. Mediterr J Rheumatol, 2024, 35(): 365-380. PMCID: PMC11345602. DOI: 10.31138/mjr.270324.tis .
Suppl 2
[40]
Fonseca JE, Santos MJ, Canhão H, et al. Interleukin-6 as a key player in systemic inflammation and joint destruction[J]. Autoimmun Rev, 2009, 8(7): 538-542. DOI: 10.1016/j.autrev.2009.01.012 .
[41]
Sikora KA, Grom AA. Update on the pathogenesis and treatment of systemic idiopathic arthritis[J]. Curr Opin Pediatr, 2011, 23(6): 640-646. PMCID: PMC3315376. DOI: 10.1097/MOP.0b013e32834cba24 .
[42]
Liu A, Ying S. Aicardi-Goutières syndrome: a monogenic type I interferonopathy[J]. Scand J Immunol, 2023, 98(4): e13314. DOI: 10.1111/sji.13314 .
[43]
Li W, Wang W, Wang W, et al. Janus kinase inhibitors in the treatment of type I interferonopathies: a case series from a single center in China[J]. Front Immunol, 2022, 13: 825367. PMCID: PMC8995420. DOI: 10.3389/fimmu.2022.825367 .
[44]
Goldberg G, Coelho L, Mo G, et al. TREX1 is required for microglial cholesterol homeostasis and oligodendrocyte terminal differentiation in human neural assembloids[J]. Mol Psychiatry, 2024, 29(3): 566-579. PMCID: PMC11153041. DOI: 10.1038/s41380-023-02348-w .
[45]
Livingston JH, Crow YJ. Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi-Goutières syndrome and beyond[J]. Neuropediatrics, 2016, 47(6): 355-360. DOI: 10.1055/s-0036-1592307 .
[46]
Uggenti C, Lepelley A, Crow YJ. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies[J]. Annu Rev Immunol, 2019, 37: 247-267. DOI: 10.1146/annurev-immunol-042718-041257 .
[47]
Li T, Yum S, Wu J, et al. cGAS activation in classical dendritic cells causes autoimmunity in TREX1-deficient mice[J]. Proc Natl Acad Sci U S A, 2024, 121(38): e2411747121. PMCID: PMC11420187. DOI: 10.1073/pnas.2411747121 .
[48]
de Cevins C, Delage L, Batignes M, et al. Single-cell RNA-sequencing of PBMCs from SAVI patients reveals disease-associated monocytes with elevated integrated stress response[J]. Cell Rep Med, 2023, 4(12): 101333. PMCID: PMC10772457. DOI: 10.1016/j.xcrm.2023.101333 .
[49]
David C, Frémond ML. Lung inflammation in STING-associated vasculopathy with onset in infancy (SAVI)[J]. Cells, 2022, 11(3): 318. PMCID: PMC8834229. DOI: 10.3390/cells11030318 .
[50]
Latour‐Álvarez I, Murcia‐Clemente L, Vázquez Pigueiras I, et al. STING-associated vasculopathy with onset in infancy (SAVI) presenting with skin lesions[J]. Pediatr Dermatol, 2024, 41(5): 893-896. DOI: 10.1111/pde.15620 .
[51]
Clarke SLN, Robertson L, Rice GI, et al. Type 1 interferonopathy presenting as juvenile idiopathic arthritis with interstitial lung disease: report of a new phenotype[J]. Pediatr Rheumatol Online J, 2020, 18(1): 37. PMCID: PMC7218611. DOI: 10.1186/s12969-020-00425-w .
[52]
Amadio R, Piperno GM, Benvenuti F. Self-DNA sensing by cGAS-STING and TLR9 in autoimmunity: is the cytoskeleton in control?[J]. Front Immunol, 2021, 12: 657344. PMCID: PMC8167430. DOI: 10.3389/fimmu.2021.657344 .
[53]
Rivers E, Worth A, Thrasher AJ, et al. How I manage patients with Wiskott Aldrich syndrome[J]. Br J Haematol, 2019, 185(4): 647-655. PMCID: PMC7612067. DOI: 10.1111/bjh.15831 .
[54]
Thrasher AJ, Burns SO. WASP: a key immunological multitasker[J]. Nat Rev Immunol, 2010, 10(3): 182-192. DOI: 10.1038/nri2724 .
[55]
Piperno GM, Naseem A, Silvestrelli G, et al. Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes[J]. JCI insight, 2020, 5(17): 132857. PMCID: PMC7526445. DOI: 10.1172/jci.insight.132857 .
[56]
Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 750. PMCID: PMC5622107. DOI: 10.1038/s41467-017-00833-9 .
[57]
Dai J, Huang YJ, He X, et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity[J]. Cell, 2019, 176(6): 1447-1460.e14. PMCID: PMC8274936. DOI: 10.1016/j.cell.2019.01.016 .
[58]
An J, Woodward JJ, Sasaki T, et al. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction[J]. J Immunol, 2015, 194(9): 4089-4093. DOI: 10.4049/jimmunol.1402793 .
[59]
Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261. PMCID: PMC6529454. DOI: 10.1038/s41467-019-08620-4 .
[60]
Xiong Y, Chen J, Liang W, et al. Blockade of the mitochondrial DNA release ameliorates hepatic ischemia-reperfusion injury through avoiding the activation of cGAS-sting pathway[J]. J Transl Med, 2024, 22(1): 796. PMCID: PMC11351313. DOI: 10.1186/s12967-024-05588-8 .
[61]
Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273. DOI: 10.1038/s41586-018-0287-8 .
[62]
Hansen AL, Buchan GJ, Rühl M, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling[J]. Proc Natl Acad Sci U S A, 2018, 115(33): E7768-E7775. PMCID: PMC6099880. DOI: 10.1073/pnas.1806239115 .
[63]
Li S, Hong Z, Wang Z, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421.e7. DOI: 10.1016/j.celrep.2018.11.097 .
[64]
Feng M, Kong D, Guo H, et al. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation[J]. Biochem Pharmacol, 2022, 198: 114975. DOI: 10.1016/j.bcp.2022.114975 .

Footnotes

所有作者均声明无利益冲突。

PDF(610 KB)

Accesses

Citation

Detail

Sections
Recommended

/