Research progress on copy number alterations in pediatric B-cell acute lymphoblastic leukemia

Xi-Yuan XU, Qun HU

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (6) : 746-752.

PDF(586 KB)
PDF(586 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (6) : 746-752. DOI: 10.7499/j.issn.1008-8830.2501007
REVIEW

Research progress on copy number alterations in pediatric B-cell acute lymphoblastic leukemia

Author information +
History +

Abstract

Copy number alteration (CNA) is a significant genetic change in pediatric B-cell acute lymphoblastic leukemia (B-ALL), with CDKN2A/B deletions, PAX5 deletions, and IKZF1 deletions being the most common. Recent studies have increasingly highlighted the potential prognostic significance of these gene deletions and multiple co-deletions in pediatric B-ALL. This paper reviews the main detection methods for CNA, as well as the prognostic characteristics and treatment approaches for common CNA in pediatric B-ALL.

Key words

Acute lymphoblastic leukemia / Copy number alteration / Prognosis / Treatment / Child

Cite this article

Download Citations
Xi-Yuan XU , Qun HU. Research progress on copy number alterations in pediatric B-cell acute lymphoblastic leukemia[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(6): 746-752 https://doi.org/10.7499/j.issn.1008-8830.2501007

References

1
杨文钰, 竺晓凡. 中国儿童急性白血病的诊治现状及展望[J]. 中华医学杂志, 2024, 104(27): 2477-2482. DOI: 10.3760/cma.j.cn112137-20231211-01347 .
2
Lejman M, Chałupnik A, Chilimoniuk Z, et al. Genetic biomarkers and their clinical implications in B-cell acute lymphoblastic leukemia in children[J]. Int J Mol Sci, 2022, 23(5): 2755. PMCID: PMC8911213. DOI: 10.3390/ijms23052755 .
3
Lin S, Liao N, Li X, et al. Prognosis of pediatric BCP-ALL with IKZF1 deletions and impact of intensive chemotherapy: results of SCCLG-2016 study[J]. Eur J Haematol, 2024, 113(3): 357-370. DOI: 10.1111/ejh.14245 .
4
Song Y, Fang Q, Mi Y. Prognostic significance of copy number variation in B-cell acute lymphoblastic leukemia[J]. Front Oncol, 2022, 12: 981036. PMCID: PMC9386345. DOI: 10.3389/fonc.2022.981036 .
5
Rosales-Rodríguez B, Núñez-Enríquez JC, Mejía-Aranguré JM, et al. Prognostic impact of somatic copy number alterations in childhood B-lineage acute lymphoblastic leukemia[J]. Curr Oncol Rep, 2021, 23(1): 2. DOI: 10.1007/s11912-020-00998-5 .
6
Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[J]. Nucleic Acids Res, 2002, 30(12): e57. PMCID: PMC117299. DOI: 10.1093/nar/gnf056 .
7
Benard-Slagter A, Zondervan I, de Groot K, et al. Digital multiplex ligation-dependent probe amplification for detection of key copy number alterations in T- and B-cell lymphoblastic leukemia[J]. J Mol Diagn, 2017, 19(5): 659-672. DOI: 10.1016/j.jmoldx.2017.05.004 .
8
Coccaro N, Anelli L, Zagaria A, et al. Feasibility of optical genome mapping in cytogenetic diagnostics of hematological neoplasms: a new way to look at DNA[J]. Diagnostics (Basel), 2023, 13(11): 1841. PMCID: PMC10252312. DOI: 10.3390/diagnostics13111841 .
9
Dremsek P, Schwarz T, Weil B, et al. Optical genome mapping in routine human genetic diagnostics-its advantages and limitations[J]. Genes (Basel), 2021, 12(12): 1958. PMCID: PMC8701374. DOI: 10.3390/genes12121958 .
10
Lühmann JL, Stelter M, Wolter M, et al. The clinical utility of optical genome mapping for the assessment of genomic aberrations in acute lymphoblastic leukemia[J]. Cancers (Basel), 2021, 13(17): 4388. PMCID: PMC8431583. DOI: 10.3390/cancers13174388 .
11
Alpár D, Egyed B, Bödör C, et al. Single-cell sequencing: biological insight and potential clinical implications in pediatric leukemia[J]. Cancers (Basel), 2021, 13(22): 5658. PMCID: PMC8616124. DOI: 10.3390/cancers13225658 .
12
Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives[J]. J Hematol Oncol, 2021, 14(1): 91. PMCID: PMC8190846. DOI: 10.1186/s13045-021-01105-2 .
13
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights[J]. Blood, 2023, 141(4): 356-368. PMCID: PMC10023733. DOI: 10.1182/blood.2022016954 .
14
Ampatzidou M, Papadhimitriou SI, Paisiou A, et al. The prognostic effect of CDKN2A/2B gene deletions in pediatric acute lymphoblastic leukemia (ALL): independent prognostic significance in BFM-based protocols[J]. Diagnostics (Basel), 2023, 13(9): 1589. PMCID: PMC10178600. DOI: 10.3390/diagnostics13091589 .
15
González-Gil C, Ribera J, Ribera JM, et al. The Yin and Yang-like clinical implications of the CDKN2A/ARF/CDKN2B gene cluster in acute lymphoblastic leukemia[J]. Genes (Basel), 2021, 12(1): 79. PMCID: PMC7827355. DOI: 10.3390/genes12010079 .
16
Onizuka M, Kikkawa E, Machida S, et al. Association of CDKN2A/2B deletion with relapse after hematopoietic stem cell transplantation for acute lymphoblastic leukemia[J]. Blood Cell Ther, 2023, 6(3): 80-86. PMCID: PMC10749213. DOI: 10.31547/bct-2023-004 .
17
Kuchinskaya E, Heyman M, Nordgren A, et al. Interphase fluorescent in situ hybridization deletion analysis of the 9p21 region and prognosis in childhood acute lymphoblastic leukaemia (ALL): results from a prospective analysis of 519 Nordic patients treated according to the NOPHO-ALL 2000 protocol[J]. Br J Haematol, 2011, 152(5): 615-622. DOI: 10.1111/j.1365-2141.2010.08532.x .
18
Feng J, Guo Y, Yang W, et al. Childhood acute B-lineage lymphoblastic leukemia with CDKN2A/B deletion is a distinct entity with adverse genetic features and poor clinical outcomes[J]. Front Oncol, 2022, 12: 878098. PMCID: PMC9195293. DOI: 10.3389/fonc.2022.878098 .
19
Hu X, Xu R, Yu S, et al. A meta-analysis of the prognostic significance of CDKN deletions in acute lymphoblastic leukaemia[J]. Ann Med, 2024, 56(1): 2427365. PMCID: PMC11574959. DOI: 10.1080/07853890.2024.2427365 .
20
Garcia-Solorio J, Núñez-Enriquez JC, Jiménez-Olivares M, et al. IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia[J]. Front Oncol, 2024, 14: 1337954. PMCID: PMC11022689. DOI: 10.3389/fonc.2024.1337954 .
21
Braun M, Pastorczak A, Fendler W, et al. Biallelic loss of CDKN2A is associated with poor response to treatment in pediatric acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2017, 58(5): 1162-1171. DOI: 10.1080/10428194.2016.1228925 .
22
Richter A, Schoenwaelder N, Sender S, et al. Cyclin-dependent kinase inhibitors in hematological malignancies-current understanding, (pre-)clinical application and promising approaches[J]. Cancers (Basel), 2021, 13(10): 2497. PMCID: PMC8161389. DOI: 10.3390/cancers13102497 .
23
Bortolozzi R, Mattiuzzo E, Trentin L, et al. Ribociclib, a Cdk4/Cdk6 kinase inhibitor, enhances glucocorticoid sensitivity in B-acute lymphoblastic leukemia (B-All)[J]. Biochem Pharmacol, 2018, 153: 230-241. DOI: 10.1016/j.bcp.2018.01.050 .
24
Bride KL, Hu H, Tikhonova A, et al. Rational drug combinations with CDK4/6 inhibitors in acute lymphoblastic leukemia[J]. Haematologica, 2022, 107(8): 1746-1757. PMCID: PMC9335101. DOI: 10.3324/haematol.2021.279410 .
25
Nasri Nasrabadi P, Martin D, Gharib E, et al. The pleiotropy of PAX5 gene products and function[J]. Int J Mol Sci, 2022, 23(17): 10095. PMCID: PMC9456430. DOI: 10.3390/ijms231710095 .
26
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms[J]. Front Immunol, 2024, 15: 1320689. PMCID: PMC10839018. DOI: 10.3389/fimmu.2024.1320689 .
27
Jia Z, Gu Z. PAX5 alterations in B-cell acute lymphoblastic leukemia[J]. Front Oncol, 2022, 12: 1023606. PMCID: PMC9640836. DOI: 10.3389/fonc.2022.1023606 .
28
Li Z, Lee SHR, Chin WHN, et al. Distinct clinical characteristics of DUX4- and PAX5-altered childhood B-lymphoblastic leukemia[J]. Blood Adv, 2021, 5(23): 5226-5238. PMCID: PMC9152998. DOI: 10.1182/bloodadvances.2021004895 .
29
Črepinšek K, Klobučar N, Tesovnik T, et al. PAX5 alterations in a consecutive childhood B-cell acute lymphoblastic leukemia cohort treated using the ALL IC-BFM 2009 protocol[J]. Cancers (Basel), 2024, 16(6): 1164. PMCID: PMC10969035. DOI: 10.3390/cancers16061164 .
30
Liu GJ, Cimmino L, Jude JG, et al. Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia[J]. Genes Dev, 2014, 28(12): 1337-1350. PMCID: PMC4066403. DOI: 10.1101/gad.240416.114 .
31
Paolino J, Tsai HK, Harris MH, et al. IKZF1 alterations and therapeutic targeting in B-cell acute lymphoblastic leukemia[J]. Biomedicines, 2024, 12(1): 89. PMCID: PMC10813044. DOI: 10.3390/biomedicines12010089 .
32
Pan L, Chen Y, Weng K, et al. Prognostic significance and treatment strategies for IKZF1 deletion in pediatric B-cell precursor acute lymphoblastic leukemia[J]. BMC Cancer, 2024, 24(1): 1070. PMCID: PMC11363382. DOI: 10.1186/s12885-024-12828-z .
33
Srinivasan S, Ramanathan S, Kumar S, et al. Prevalence and prognostic significance of IKZF1 deletion in paediatric acute lymphoblastic leukemia: a systematic review and meta-analysis[J]. Ann Hematol, 2023, 102(8): 2165-2179. DOI: 10.1007/s00277-023-05250-1 .
34
Crepinsek K, Marinsek G, Kavcic M, et al. Clinical impacts of copy number variations in B-cell differentiation and cell cycle control genes in pediatric B-cell acute lymphoblastic leukemia: a single centre experience[J]. Radiol Oncol, 2021, 56(1): 92-101. PMCID: PMC8884847. DOI: 10.2478/raon-2021-0050 .
35
Braun M, Pastorczak A, Sędek Ł, et al. Prognostic significance of IKZF1 deletions and IKZF1plu s profile in children with B-cell precursor acute lymphoblastic leukemia treated according to the ALL-IC BFM 2009 protocol[J]. Hematol Oncol, 2022, 40(3): 430-441. DOI: 10.1002/hon.2973 .
36
Gupta SK, Bakhshi S, Gupta R, et al. IKZF1 deletion subtyping and outcome analysis in BCR-ABL1-negative pediatric B-cell acute lymphoblastic leukemia: a single-institution experience from north India[J]. Clin Lymphoma Myeloma Leuk, 2021, 21(8): e666-e673. DOI: 10.1016/j.clml.2021.03.007 .
37
van der Veer A, Zaliova M, Mottadelli F, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL[J]. Blood, 2014, 123(11): 1691-1698. DOI: 10.1182/blood-2013-06-509794 .
38
Scheijen B, Boer JM, Marke R, et al. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients[J]. Haematologica, 2017, 102(3): 541-551. PMCID: PMC5394950. DOI: 10.3324/haematol.2016.153023 .
39
Huang YJ, Liu HC, Jaing TH, et al. RAS pathway mutation is an added-value biomarker in pediatric Philadelphia-negative B-cell acute lymphoblastic leukemia with IKZF1 deletions[J]. Pediatr Blood Cancer, 2021, 68(4): e28899. DOI: 10.1002/pbc.28899 .
40
Clappier E, Auclerc MF, Rapion J, et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions[J]. Leukemia, 2014, 28(1): 70-77. DOI: 10.1038/leu.2013.277 .
41
Østergaard A, Enshaei A, Pieters R, et al. The prognostic effect of IKZF1 deletions in ETV6::RUNX1 and high hyperdiploid childhood acute lymphoblastic leukemia[J]. Hemasphere, 2023, 7(5): e875. PMCID: PMC10162793. DOI: 10.1097/HS9.0000000000000875 .
42
Pieters R, de Groot-Kruseman H, Fiocco M, et al. Improved outcome for ALL by prolonging therapy for IKZF1 deletion and decreasing therapy for other risk groups[J]. J Clin Oncol, 2023, 41(25): 4130-4142. DOI: 10.1200/JCO.22.02705 .
43
Clappier E, Grardel N, Bakkus M, et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children's Leukemia Group study 58951[J]. Leukemia, 2015, 29(11): 2154-2161. DOI: 10.1038/leu.2015.134 .
44
Hinze L, Möricke A, Zimmermann M, et al. Prognostic impact of IKZF1 deletions in association with vincristine-dexamethasone pulses during maintenance treatment of childhood acute lymphoblastic leukemia on trial ALL-BFM 95[J]. Leukemia, 2017, 31(8): 1840-1842. DOI: 10.1038/leu.2017.154 .
45
Yeoh AEJ, Lu Y, Chin WHN, et al. Intensifying treatment of childhood B-lymphoblastic leukemia with IKZF1 deletion reduces relapse and improves overall survival: results of Malaysia-Singapore ALL 2010 study[J]. J Clin Oncol, 2018, 36(26): 2726-2735. DOI: 10.1200/JCO.2018.78.3050 .
46
Stanulla M, Dagdan E, Zaliova M, et al. IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia[J]. J Clin Oncol, 2018, 36(12): 1240-1249. DOI: 10.1200/JCO.2017.74.3617 .
47
Kicinski M, Arfeuille C, Grardel N, et al. The prognostic value of IKZF1plus in B-cell progenitor acute lymphoblastic leukemia: results from the EORTC 58951 trial[J]. Pediatr Blood Cancer, 2023, 70(6): e30313. DOI: 10.1002/pbc.30313 .
48
Liu HC, Huang YJ, Jaing TH, et al. Refining risk stratification in paediatric B-acute lymphoblastic leukaemia: combining IKZF1plus and day 15 MRD positivity[J]. Br J Haematol, 2024, 204(4): 1344-1353. DOI: 10.1111/bjh.19338 .
49
Bedics G, Egyed B, Kotmayer L, et al. PersonALL: a genetic scoring guide for personalized risk assessment in pediatric B-cell precursor acute lymphoblastic leukemia[J]. Br J Cancer, 2023, 129(3): 455-465. PMCID: PMC10403542. DOI: 10.1038/s41416-023-02309-8 .
50
Moorman AV, Enshaei A, Schwab C, et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia[J]. Blood, 2014, 124(9): 1434-1444. DOI: 10.1182/blood-2014-03-562918 .
51
Hamadeh L, Enshaei A, Schwab C, et al. Validation of the United Kingdom copy-number alteration classifier in 3 239 children with B-cell precursor ALL[J]. Blood Adv, 2019, 3(2): 148-157. PMCID: PMC6341196. DOI: 10.1182/bloodadvances.2018025718 .
52
Gupta SK, Singh M, Chandrashekar PH, et al. Clinical and prognostic impact of copy number alterations and associated risk profiles in a cohort of pediatric B-cell precursor acute lymphoblastic leukemia cases treated under ICiCLe protocol[J]. HemaSphere, 2022, 6(10): e782. PMCID: PMC9529051. DOI: 10.1097/HS9.0000000000000782 .
53
Rosales-Rodríguez B, Núñez-Enríquez JC, Velázquez-Wong AC, et al. Copy number alterations are associated with the risk of very early relapse in pediatric B-lineage acute lymphoblastic leukemia: a nested case-control MIGICCL study[J]. Arch Med Res, 2021, 52(4): 414-422. DOI: 10.1016/j.arcmed.2020.12.013 .

许喜原综述;胡群审校。

PDF(586 KB)

Accesses

Citation

Detail

Sections
Recommended

/