Effects of hyperoxia on the expression of hippocampal N-methyl D-aspartate receptor 1 and its synapse-associated molecules in neonatal rats

Yi XIONG, Lin CHENG, Na JIANG, Tuan-Mei WANG, Tao BO

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (8) : 1002-1010.

PDF(2078 KB)
PDF(2078 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (8) : 1002-1010. DOI: 10.7499/j.issn.1008-8830.2501086
EXPERIMENTAL RESEARCH

Effects of hyperoxia on the expression of hippocampal N-methyl D-aspartate receptor 1 and its synapse-associated molecules in neonatal rats

Author information +
History +

Abstract

Objective To investigate the effects of hyperoxia on the expression of N-methyl-D-aspartate receptor 1 (NMDAR1) and its synapse-associated molecules, including cannabinoid receptor 1 (CB1R), postsynaptic density 95 (PSD95), and synapsin (SYN), in the hippocampus of neonatal rats. Methods One-day-old Sprague-Dawley neonatal rats were randomly divided into a hyperoxia group and a control group (n=8 per group). The hyperoxia group was exposed to 80% ± 5% oxygen continuously, while the control group was exposed to room air, for 7 days. At 1, 3, and 7 days after hyperoxia exposure, hematoxylin and eosin (HE) staining was used to observe histopathological changes in the brain. The expression levels of NMDAR1, CB1R, PSD95, and SYN proteins and mRNAs in the hippocampus were detected by immunohistochemistry, Western blotting, and quantitative real-time PCR. Results After 7 days of hyperoxia exposure, the hyperoxia group showed decreased neuronal density and disordered arrangement in brain tissue. Compared with the control group, after 1 day of hyperoxia exposure, CB1R mRNA and both NMDAR1 and CB1R protein expression in the hyperoxia group were significantly downregulated, while SYN protein expression was significantly upregulated (P<0.05). After 3 days, mRNA expression of NMDAR1, CB1R, and SYN was significantly decreased (P<0.05); NMDAR1 and CB1R protein expression was significantly downregulated (P<0.05), while PSD95 and SYN protein expression was significantly upregulated (P<0.05). After 7 days of hyperoxia, the protein expression of NMDAR1 and CB1R was significantly upregulated (P<0.05). Conclusions Continuous hyperoxia exposure induces time-dependent changes in the expression levels of NMDAR1 and its synapse-associated molecules in the hippocampus of neonatal rats.

Key words

Brain development / Hyperoxia / Hippocampus / NMDA receptor 1 / Neonatal rat

Cite this article

Download Citations
Yi XIONG , Lin CHENG , Na JIANG , et al . Effects of hyperoxia on the expression of hippocampal N-methyl D-aspartate receptor 1 and its synapse-associated molecules in neonatal rats[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(8): 1002-1010 https://doi.org/10.7499/j.issn.1008-8830.2501086

References

[1]
Bitterman H. Bench-to-bedside review: oxygen as a drug[J]. Crit Care, 2009, 13(1): 205. PMCID: PMC2688103. DOI: 10.1186/cc7151 .
[2]
Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial[J]. JAMA, 2016, 316(15): 1583-1589. DOI: 10.1001/jama.2016.11993 .
[3]
Scheuer T, dem Brinke EA, Grosser S, et al. Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition[J]. Development, 2021, 148(20): dev198390. DOI: 10.1242/dev.198390 .
[4]
Damiani E, Donati A, Girardis M. Oxygen in the critically ill: friend or foe?[J]. Curr Opin Anaesthesiol, 2018, 31(2): 129-135. DOI: 10.1097/ACO.0000000000000559 .
[5]
Martin J, Mazer-Amirshahi M, Pourmand A. The impact of hyperoxia in the critically ill patient: a review of the literature[J]. Respir Care, 2020, 65(8): 1202-1210. DOI: 10.4187/respcare.07310 .
[6]
Hong JY, Kim MN, Kim EG, et al. Clusterin deficiency exacerbates hyperoxia-induced acute lung injury[J]. Cells, 2021, 10(4): 944. PMCID: PMC8073575. DOI: 10.3390/cells10040944 .
[7]
Oltman SP, Rogers EE, Baer RJ, et al. Initial metabolic profiles are associated with 7-day survival among infants born at 22-25 weeks of gestation[J]. J Pediatr, 2018, 198: 194-200.e3. PMCID: PMC6016556. DOI: 10.1016/j.jpeds.2018.03.032 .
[8]
Scheuer T, Sharkovska Y, Tarabykin V, et al. Neonatal hyperoxia perturbs neuronal development in the cerebellum[J]. Mol Neurobiol, 2018, 55(5): 3901-3915. DOI: 10.1007/s12035-017-0612-5 .
[9]
Panfoli I, Candiano G, Malova M, et al. Oxidative stress as a primary risk factor for brain damage in preterm newborns[J]. Front Pediatr, 2018, 6: 369. PMCID: PMC6281966. DOI: 10.3389/fped.2018.00369 .
[10]
Smith MS. Working with working memory and language[J]. Second Lang Res, 2017, 33(3): 291-297. DOI: 10.1177/0267658317719315 .
[11]
Witter MP, Kleven H, Kobro Flatmoen A. Comparative contemplations on the hippocampus[J]. Brain Behav Evol, 2017, 90(1): 15-24. DOI: 10.1159/000475703 .
[12]
陈艳林, 徐琳, 徐盛嘉. 身体活动对海马体可塑性和认知功能的影响[J]. 中国组织工程研究, 2020, 24(5): 773-779. DOI: 10.3969/j.issn.2095-4344.1915 .
[13]
Xia YW, Liu T, Zhang RL, et al. MicroRNA expression profiles in the neonatal rat hippocampus exposed to normobaric hyperoxia[J]. Open J Pediatr, 2024, 14(6): 1038-1049. DOI: 10.4236/ojped.2024.146098 .
[14]
Gonzalez KC, Negrean A, Liao Z, et al. Synaptic basis of feature selectivity in hippocampal neurons[J]. Nature, 2025, 637(8048): 1152-1160. PMCID: PMC11988941. DOI: 10.1038/s41586-024-08325-9 .
[15]
Ruggiero A, Heim LR, Susman L, et al. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics[J]. Neuron, 2025, 113(2): 244-259.e7. DOI: 10.1016/j.neuron.2024.10.014 .
[16]
Tzilivaki A, Tukker JJ, Maier N, et al. Hippocampal GABAergic interneurons and memory[J]. Neuron, 2023, 111(20): 3154-3175. PMCID: PMC10593603. DOI: 10.1016/j.neuron.2023.06.016 .
[17]
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: old actor, new dimensions[J]. Neuron, 2023, 111(15): 2312-2328. DOI: 10.1016/j.neuron.2023.05.002 .
[18]
McEachern EP, Coley AA, Yang SS, et al. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex[J]. Neuropharmacology, 2020, 179: 108277. PMCID: PMC7572776. DOI: 10.1016/j.neuropharm.2020.108277 .
[19]
Al N, Çakir A, Koç C, et al. Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury[J]. Turk J Med Sci, 2020, 50(8): 2059-2066. DOI: 10.3906/sag-2002-14 .
[20]
Lin X, Zhou M, Wang H. A rat model establishment of bronchopulmonary dysplasia-related lung & brain injury within 28 days after birth[J]. BMC Neurosci, 2024, 25(1): 73. PMCID: PMC11603889. DOI: 10.1186/s12868-024-00912-w .
[21]
宋朝敏, 王程毅, 陈涵强, 等. 新生大鼠高氧脑损伤的评价研究[J]. 中国新生儿科杂志, 2014, 29(1): 54-57. DOI: 10.3969/j.issn.1673-6710.2014.01.014 .
[22]
刘永青, 赵钰玮, 张健, 等. 硫酸镁对高氧脑损伤新生大鼠的神经保护作用[J]. 广西医学, 2021, 43(6): 707-710. DOI: 10.11675/j.issn.0253-4304.2021.06.14 .
[23]
El-Farrash RA, El Shimy MS, El-Sakka AS, et al. Efficacy and safety of oral paracetamol versus oral ibuprofen for closure of patent ductus arteriosus in preterm infants: a randomized controlled trial[J]. J Matern Fetal Neonatal Med, 2019, 32(21): 3647-3654. DOI: 10.1080/14767058.2018.1470235 .
[24]
van Bel F, Mintzer JP. Monitoring cerebral oxygenation of the immature brain: a neuroprotective strategy?[J]. Pediatr Res, 2018, 84(2): 159-164. DOI: 10.1038/s41390-018-0026-8 .
[25]
Ali A, Zambrano R, Duncan MR, et al. Author correction: hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats[J]. Sci Rep, 2021, 11(1): 20229. PMCID: PMC8494818. DOI: 10.1038/s41598-021-99450-2 .
[26]
田桂湘, 彭坷平, 薄涛, 等. 高氧损伤性星形胶质细胞焦亡过程的电生理变化特征[J]. 中南大学学报(医学版), 2020, 45(7): 759-765. DOI: 10.11817/j.issn.1672-7347.2020.200029 .
[27]
Reich B, Hoeber D, Bendix I, et al. Hyperoxia and the immature brain[J]. Dev Neurosci, 2016, 38(5): 311-330. DOI: 10.1159/000454917 .
[28]
Liu Y, Jiang P, Du M, et al. Hyperoxia-induced immature brain injury through the TLR4 signaling pathway in newborn mice[J]. Brain Res, 2015, 1610: 51-60. DOI: 10.1016/j.brainres.2015.03.021 .
[29]
Mizuno R, Kawada K, Sakai Y. Prostaglandin E2/EP signaling in the tumor microenvironment of colorectal cancer[J]. Int J Mol Sci, 2019, 20(24): 6254. PMCID: PMC6940958. DOI: 10.3390/ijms20246254 .
[30]
Xu Y, Liu Y, Li K, et al. Regulation of PGE2 pathway during cerebral ischemia reperfusion injury in rat[J]. Cell Mol Neurobiol, 2021, 41(7): 1483-1496. PMCID: PMC11448554. DOI: 10.1007/s10571-020-00911-5 .
[31]
Banik A, Amaradhi R, Lee D, et al. Prostaglandin EP2 receptor antagonist ameliorates neuroinflammation in a two-hit mouse model of Alzheimer's disease[J]. J Neuroinflammation, 2021, 18(1): 273. PMCID: PMC8605573. DOI: 10.1186/s12974-021-02297-7 .
[32]
Gonzalez J, Jurado-Coronel JC, Ávila MF, et al. NMDARs in neurological diseases: a potential therapeutic target[J]. Int J Neurosci, 2015, 125(5): 315-327. DOI: 10.3109/00207454.2014.940941 .
[33]
Zhang J, Chen C. Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation[J]. J Biol Chem, 2008, 283(33): 22601-22611. PMCID: PMC2504873 . DOI: 10.1074/jbc.M800524200 .
[34]
Zhou Q, Sheng M. NMDA receptors in nervous system diseases[J]. Neuropharmacology, 2013, 74: 69-75. DOI: 10.1016/j.neuropharm.2013.03.030 .
[35]
Herzog LE, Wang L, Yu E, et al. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients[J]. Transl Psychiatry, 2023, 13(1): 92. PMCID: PMC10011509. DOI: 10.1038/s41398-023-02393-7 .
[36]
Dalmau J. NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias Lecture[J]. Neurology, 2016, 87(23): 2471-2482. PMCID: PMC5177671. DOI: 10.1212/WNL.0000000000003414 .
[37]
Wu CY, Wu JD, Chen CC. The association of ovarian teratoma and anti-N-methyl-D-aspartate receptor encephalitis: an updated integrative review[J]. Int J Mol Sci, 2021, 22(20): 10911. PMCID: PMC8535897. DOI: 10.3390/ijms222010911 .
[38]
Su T, Lu Y, Fu C, et al. GluN2A mediates ketamine-induced rapid antidepressant-like responses[J]. Nat Neurosci, 2023, 26(10): 1751-1761. DOI: 10.1038/s41593-023-01436-y .
[39]
Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer's disease[J]. J Alzheimers Dis, 2017, 57(4): 1041-1048. PMCID: PMC5791143. DOI: 10.3233/JAD-160763 .
[40]
Lafourcade M, Elezgarai I, Mato S, et al. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex[J]. PLoS One, 2007, 2(8): e709. PMCID: PMC1933592. DOI: 10.1371/journal.pone.0000709 .
[41]
Molla HM, Tseng KY. Neural substrates underlying the negative impact of cannabinoid exposure during adolescence[J]. Pharmacol Biochem Behav, 2020, 195: 172965. PMCID: PMC7415707. DOI: 10.1016/j.pbb.2020.172965 .
[42]
Kwon SE, Chapman ER. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons[J]. Neuron, 2011, 70(5): 847-854. PMCID: PMC3136197. DOI: 10.1016/j.neuron.2011.04.001 .
[43]
El-Husseini AE, Schnell E, Chetkovich DM, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science, 2000, 290(5495): 1364-1368. DOI: 10.1126/science.290.5495.1364 .
[44]
Martinez G, Di Giacomo C, Carnazza ML, et al. MAP2, synaptophysin immunostaining in rat brain and behavioral modifications after cerebral postischemic reperfusion[J]. Dev Neurosci, 1997, 19(6): 457-464. DOI: 10.1159/000111243 .
[45]
Levy AM, Gomez-Puertas P, Tümer Z. Neurodevelopmental disorders associated with PSD-95 and its interaction partners[J]. Int J Mol Sci, 2022, 23(8): 4390. PMCID: PMC9025546. DOI: 10.3390/ijms23084390 .
PDF(2078 KB)

Accesses

Citation

Detail

Sections
Recommended

/