Research advances in the inhibitory effect of chondroitin sulfate proteoglycans on axon growth after premature white matter injury and its underlying mechanisms

Xiao-Jie TIAN, Rui-Wei GAO, Chao CHEN

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (7) : 875-880.

PDF(524 KB)
PDF(524 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (7) : 875-880. DOI: 10.7499/j.issn.1008-8830.2502018
REVIEW

Research advances in the inhibitory effect of chondroitin sulfate proteoglycans on axon growth after premature white matter injury and its underlying mechanisms

Author information +
History +

Abstract

White matter injury (WMI) is a major form of brain injury in preterm infants. Its characteristic pathological features primarily involve impaired development of oligodendrocyte precursor cells and structural damage to axons, which can lead to the neurological sequelae such as motor, behavioral, and cognitive dysfunctions. Chondroitin sulfate proteoglycans (CSPGs), as the important components of extracellular matrix, can participate in neuroinflammatory response mediated by microglial cells and dynamically balance glial scar reconstruction and axon growth by regulating specific receptors and signaling pathways. This article reviews the relationship between CSPGs and WMI, as well as the mechanisms by which CSPGs inhibit axon growth, focusing on the role of multi-target regulation of CSPGs in promoting axon plasticity and functional brain recovery, thereby providing a theoretical basis for improving the prognosis of preterm infants with WMI.

Key words

White matter injury / Chondroitin sulfate proteoglycan / Axon / Hypoxia ischemia / Preterm infant

Cite this article

Download Citations
Xiao-Jie TIAN , Rui-Wei GAO , Chao CHEN. Research advances in the inhibitory effect of chondroitin sulfate proteoglycans on axon growth after premature white matter injury and its underlying mechanisms[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(7): 875-880 https://doi.org/10.7499/j.issn.1008-8830.2502018

References

[1]
Perin J, Mulick A, Yeung D, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the sustainable development goals[J]. Lancet Child Adolesc Health, 2022, 6(2): 106-115. PMCID: PMC8786667. DOI: 10.1016/S2352-4642(21)00311-4 .
[2]
Song Q, Chen J, Zhou Y, et al. Preterm delivery rate in China: a systematic review and meta-analysis[J]. BMC Pregnancy Childbirth, 2022, 22(1): 383. PMCID: PMC9063297. DOI: 10.1186/s12884-022-04713-z .
[3]
Lawn JE, Ohuma EO, Bradley E, et al. Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting[J]. Lancet, 2023, 401(10389): 1707-1719. DOI: 10.1016/S0140-6736(23)00522-6 .
[4]
Guillot M, Miller SP. The dimensions of white matter injury in preterm neonates[J]. Semin Perinatol, 2021, 45(7): 151469. DOI: 10.1016/j.semperi.2021.151469 .
[5]
Shao R, Sun D, Hu Y, et al. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia[J]. J Neurosci Res, 2021, 99(4): 991-1008. DOI: 10.1002/jnr.24761 .
[6]
Baldassarro VA, Marchesini A, Giardino L, et al. Differential effects of glucose deprivation on the survival of fetal versus adult neural stem cells-derived oligodendrocyte precursor cells[J]. Glia, 2020, 68(5): 898-917. DOI: 10.1002/glia.23750 .
[7]
Mencio CP, Hussein RK, Yu P, et al. The role of chondroitin sulfate proteoglycans in nervous system development[J]. J Histochem Cytochem, 2021, 69(1): 61-80. PMCID: PMC7780190. DOI: 10.1369/0022155420959147 .
[8]
Talwalkar A, Haden G, Duncan KA. Chondroitin sulfate proteoglycans mRNA expression and degradation in the zebra finch following traumatic brain injury[J]. J Chem Neuroanat, 2024, 138: 102418. DOI: 10.1016/j.jchemneu.2024.102418 .
[9]
Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system[J]. Exp Neurol, 2015, 269: 169-187. DOI: 10.1016/j.expneurol.2015.04.006 .
[10]
Li F, Sami A, Noristani HN, et al. Glial metabolic rewiring promotes axon regeneration and functional recovery in the central nervous system[J]. Cell Metab, 2020, 32(5): 767-785.e7. PMCID: PMC7642184. DOI: 10.1016/j.cmet.2020.08.015 .
[11]
Sun Y, Deng Y, Xiao M, et al. Chondroitin sulfate proteoglycans inhibit the migration and differentiation of oligodendrocyte precursor cells and its counteractive interaction with laminin[J]. Int J Mol Med, 2017, 40(6): 1657-1668. PMCID: PMC5716457. DOI: 10.3892/ijmm.2017.3153 .
[12]
Avram S, Shaposhnikov S, Buiu C, et al. Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders[J]. Biomed Res Int, 2014, 2014: 642798. PMCID: PMC4052930. DOI: 10.1155/2014/642798 .
[13]
Lau LW, Cua R, Keough MB, et al. Pathophysiology of the brain extracellular matrix: a new target for remyelination[J]. Nat Rev Neurosci, 2013, 14(10): 722-729. DOI: 10.1038/nrn3550 .
[14]
Hayes A, Sugahara K, Farrugia B, et al. Biodiversity of CS-proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis[J]. Biochem J, 2018, 475(3): 587-620. DOI: 10.1042/BCJ20170820 .
[15]
Gao R, Wang M, Lin J, et al. Spatiotemporal expression patterns of chondroitin sulfate proteoglycan mRNAs in the developing rat brain[J]. Neuroreport, 2018, 29(7): 517-523. DOI: 10.1097/WNR.0000000000000957 .
[16]
Deng YP, Sun Y, Hu L, et al. Chondroitin sulfate proteoglycans impede myelination by oligodendrocytes after perinatal white matter injury[J]. Exp Neurol, 2015, 269: 213-223. DOI: 10.1016/j.expneurol.2015.03.026 .
[17]
Harlow DE, Macklin WB. Inhibitors of myelination: ECM changes, CSPGs and PTPs[J]. Exp Neurol, 2014, 251: 39-46. PMCID: PMC4060786. DOI: 10.1016/j.expneurol.2013.10.017 .
[18]
Maeda N, Fukazawa N, Ishii M. Chondroitin sulfate proteoglycans in neural development and plasticity[J]. Front Biosci (Landmark Ed), 2010, 15(2): 626-644. DOI: 10.2741/3637 .
[19]
Wang R, Li T, Diao S, et al. Inhibition of the proteoglycan receptor PTPσ promotes functional recovery on a rodent model of preterm hypoxic-ischemic brain injury[J]. Exp Neurol, 2023, 370: 114564. DOI: 10.1016/j.expneurol.2023.114564 .
[20]
Hu J, Rodemer W, Zhang G, et al. Chondroitinase ABC promotes axon regeneration and reduces retrograde apoptosis signaling in lamprey[J]. Front Cell Dev Biol, 2021, 9: 653638. PMCID: PMC8027354. DOI: 10.3389/fcell.2021.653638 .
[21]
Hosseini SM, Alizadeh A, Shahsavani N, et al. Suppressing CSPG/LAR/PTPσ axis facilitates neuronal replacement and synaptogenesis by human neural precursor grafts and improves recovery after spinal cord injury[J]. J Neurosci, 2022, 42(15): 3096-3121. PMCID: PMC8994547. DOI: 10.1523/JNEUROSCI.2177-21.2022 .
[22]
Emperador-Melero J, de Nola G, Kaeser PS. Intact synapse structure and function after combined knockout of PTPδ, PTPσ, and LAR[J]. Elife, 2021, 10: e66638. PMCID: PMC7963474. DOI: 10.7554/eLife.66638 .
[23]
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury[J]. Exp Neurol, 2020, 328: 113276. PMCID: PMC7145755. DOI: 10.1016/j.expneurol.2020.113276 .
[24]
Fisher D, Xing B, Dill J, et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors[J]. J Neurosci, 2011, 31(40): 14051-14066. PMCID: PMC3220601 . DOI: 10.1523/JNEUROSCI.1737-11.2011 .
[25]
Luo F, Wang J, Zhang Z, et al. Inhibition of CSPG receptor PTPσ promotes migration of newly born neuroblasts, axonal sprouting, and recovery from stroke[J]. Cell Rep, 2022, 40(4): 111137. PMCID: PMC9677607. DOI: 10.1016/j.celrep.2022.111137 .
[26]
Gupta SJ, Churchward MA, Todd KG, et al. Pleiotrophin signals through ALK receptor to enhance the growth of neurons in the presence of inhibitory chondroitin sulfate proteoglycans[J]. Neurosci Insights, 2023, 18: 26331055231186993. PMCID: PMC10350765. DOI: 10.1177/26331055231186993 .
[27]
Le C, Hu X, Tong L, et al. Inhibition of LAR attenuates neuroinflammation through RhoA/IRS-1/Akt signaling pathway after intracerebral hemorrhage in mice[J]. J Cereb Blood Flow Metab, 2023, 43(6): 869-881. PMCID: PMC10196755. DOI: 10.1177/0271678X231159352 .
[28]
Dickendesher TL, Baldwin KT, Mironova YA, et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans[J]. Nat Neurosci, 2012, 15(5): 703-712. PMCID: PMC3337880. DOI: 10.1038/nn.3070 .
[29]
Liu Y, Zhao Y, Liao X, et al. PD-1 deficiency aggravates spinal cord injury by regulating the reprogramming of NG2 glia and activating the NgR/RhoA/ROCK signaling pathway[J]. Cell Signal, 2024, 114: 110978. DOI: 10.1016/j.cellsig.2023.110978 .
[30]
Stern S, Hilton BJ, Burnside ER, et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury[J]. Neuron, 2021, 109(21): 3436-3455.e9. DOI: 10.1016/j.neuron.2021.08.014 .
[31]
Ohtake Y, Wong D, Abdul-Muneer PM, et al. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons[J]. Sci Rep, 2016, 6: 37152. PMCID: PMC5111048. DOI: 10.1038/srep37152 .
[32]
Alabed YZ, Pool M, Ong Tone S, et al. Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition[J]. J Neurosci, 2007, 27(7): 1702-1711. PMCID: PMC6673735. DOI: 10.1523/JNEUROSCI.5055-06.2007 .
[33]
Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (review)[J]. Mol Med Rep, 2019, 19(2): 783-791. PMCID: PMC6323245. DOI: 10.3892/mmr.2018.9713 .
[34]
Sapieha PS, Duplan L, Uetani N, et al. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS[J]. Mol Cell Neurosci, 2005, 28(4): 625-635. DOI: 10.1016/j.mcn.2004.10.011 .
[35]
Wakatsuki S, Saitoh F, Araki T. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation[J]. Nat Cell Biol, 2011, 13(12): 1415-1423. DOI: 10.1038/ncb2373 .
[36]
Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems[J]. Exp Neurol, 2018, 302: 196-204. PMCID: PMC6275553. DOI: 10.1016/j.expneurol.2018.01.014 .
[37]
Ma C, Teng L, Lin G, et al. L-leucine promotes axonal outgrowth and regeneration via mTOR activation[J]. FASEB J, 2021, 35(5): e21526. DOI: 10.1096/fj.202001798RR .
[38]
Logun MT, Wynens KE, Simchick G, et al. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion[J]. FASEB J, 2019, 33(11): 11973-11992. PMCID: PMC6902699 . DOI: 10.1096/fj.201802610RR .
[39]
Yao M, Fang J, Li J, et al. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice[J]. J Neuroinflammation, 2022, 19(1): 207. PMCID: PMC9387079. DOI: 10.1186/s12974-022-02561-4 .
[40]
Clifford T, Finkel Z, Rodriguez B, et al. Current advancements in spinal cord injury research-glial scar formation and neural regeneration[J]. Cells, 2023, 12(6): 853. PMCID: PMC10046908. DOI: 10.3390/cells12060853 .
[41]
Forostyak S, Homola A, Turnovcova K, et al. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS[J]. Stem Cells, 2014, 32(12): 3163-3172. PMCID: PMC4321196. DOI: 10.1002/stem.1812 .
[42]
Koenig B, Pape D, Chao O, et al. Long term study of deoxyribozyme administration to XT-1 mRNA promotes corticospinal tract regeneration and improves behavioral outcome after spinal cord injury[J]. Exp Neurol, 2016, 276: 51-58. DOI: 10.1016/j.expneurol.2015.09.015 .
[43]
Koh CH, Pronin S, Hughes M. Chondroitinase ABC for neurological recovery after acute brain injury: systematic review and meta-analyses of preclinical studies[J]. Brain Inj, 2018, 32(6): 715-729. DOI: 10.1080/02699052.2018.1438665 .
[44]
Mukherjee N, Nandi S, Garg S, et al. Targeting chondroitin sulfate proteoglycans: an emerging therapeutic strategy to treat CNS injury[J]. ACS Chem Neurosci, 2020, 11(3): 231-232. DOI: 10.1021/acschemneuro.0c00004 .
[45]
Siebert JR, Osterhout DJ. Select neurotrophins promote oligodendrocyte progenitor cell process outgrowth in the presence of chondroitin sulfate proteoglycans[J]. J Neurosci Res, 2021, 99(4): 1009-1023. PMCID: PMC7986866. DOI: 10.1002/jnr.24780 .

Footnotes

所有作者均声明无利益冲突。

PDF(524 KB)

Accesses

Citation

Detail

Sections
Recommended

/