DeepSeek perspective on managing Kawasaki disease in Chinese children

Yan PAN, Fu-Yong JIAO

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (5) : 524-528.

PDF(514 KB)
PDF(514 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (5) : 524-528. DOI: 10.7499/j.issn.1008-8830.2502042
COMMENTARY

DeepSeek perspective on managing Kawasaki disease in Chinese children

Author information +
History +

Abstract

Clinical management of Kawasaki disease faces several challenges, including difficulties in early diagnosis, insufficient personalized treatment, delayed access to information, and inefficient multidisciplinary collaboration. This paper explores the application of the DeepSeek AI model in the management of Kawasaki disease: (1) Enhancing early diagnosis accuracy through the integration and analysis of multimodal data (imaging, laboratory, and clinical data); (2) Dynamically adjusting treatment plans to achieve personalized medicine; (3) Integrating the latest global guidelines and research findings in real-time to optimize clinical processes; (4) Providing personalized health education content to enhance parental involvement; (5) Establishing a platform for sharing clinical data to support intelligent decision-making and multidisciplinary collaboration.

Key words

Kawasaki disease / Diagnosis / Treatment / Guideline / DeepSeek / Child

Cite this article

Download Citations
Yan PAN , Fu-Yong JIAO. DeepSeek perspective on managing Kawasaki disease in Chinese children[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(5): 524-528 https://doi.org/10.7499/j.issn.1008-8830.2502042

References

1
Jiao F, Pan Y, Du Z, et al. Guideline for the diagnosis and treatment of incomplete Kawasaki disease in children in China[J]. BMC Pediatr, 2024, 24(1): 477. PMCID: PMC11282762. DOI: 10.1186/s12887-024-04961-2 .
2
陕西省川崎病诊疗中心/陕西省人民医院儿童病院, 国家儿童医学中心/首都医科大学附属北京儿童医院, 上海交通大学医学院附属儿童医院, 等. 中国儿童川崎病诊疗循证指南(2023年)[J]. 中国当代儿科杂志, 2023, 25(12): 1198-1210. PMCID: PMC10731970. DOI: 10.7499/j.issn.1008-8830.2309038 .
3
张清友, 杜军保. 川崎病诊断中的若干问题[J]. 中华实用儿科临床杂志, 2020, 35(13): 961-964. DOI: 10.3760/cma.j.cn101070-20200706-01134 .
4
Gibney E. China's cheap, open AI model DeepSeek thrills scientists[J]. Nature, 2025, 638(8049): 13-14. DOI: 10.1038/d41586-025-00229-6 .
5
Normile D. Chinese firm's large language model makes a splash[J]. Science, 2025, 387(6731): 238. DOI: 10.1126/science.adv9836 .
6
Sajid MI, Ahmed S, Waqar U, et al. SARS-CoV-2: has artificial intelligence stood the test of time[J]. Chin Med J (Engl), 2022, 135(15): 1792-1802. PMCID: PMC9521771. DOI: 10.1097/CM9.0000000000002058 .
7
Jiang Z, Song W, Yan Y, et al. Automated valvular heart disease detection using heart sound with a deep learning algorithm[J]. Int J Cardiol Heart Vasc, 2024, 51: 101368. PMCID: PMC10933456. DOI: 10.1016/j.ijcha.2024.101368 .
8
Zuo F, Jing P, Sun J, et al. Deep learning-based eye-tracking analysis for diagnosis of Alzheimer's disease using 3D comprehensive visual stimuli[J]. IEEE J Biomed Health Inform, 2024, 28(5): 2781-2793. DOI: 10.1109/JBHI.2024.3365172 .
9
Payette J, Vaussenat F, Cloutier S. Deep learning framework for sensor array precision and accuracy enhancement[J]. Sci Rep, 2023, 13(1): 11237. PMCID: PMC10336090. DOI: 10.1038/s41598-023-38290-8 .
10
陕西省川崎病诊疗中心, 陕西省儿童内科疾病临床医学研究中心, 陕西省人民医院儿童病院, 等. 静脉输注免疫球蛋白在儿童川崎病中应用的专家共识[J]. 中国当代儿科杂志, 2021, 23(9): 867-876. PMCID: PMC8480171. DOI: 10.7499/j.issn.1008-8830.2107110 .
11
Gibney E. Scientists flock to DeepSeek: how they're using the blockbuster AI model[J]. Nature, 2025. Epub ahead of print.DOI: 10.1038/d41586-025-00275-0 .
12
Pan Y, Fan Q, Hu L. Treatment of immunoglobulin-resistant Kawasaki disease: a Bayesian network meta-analysis of different regimens[J]. Front Pediatr, 2023, 11: 1149519. PMCID: PMC10373588. DOI: 10.3389/fped.2023.1149519 .
13
Conroy G, Mallapaty S. How China created AI model DeepSeek and shocked the world[J]. Nature, 2025, 638(8050): 300-301. DOI: 10.1038/d41586-025-00259-0 .
14
焦富勇, 穆志龙, 杜忠东, 等. 儿童不完全性川崎病的诊治[J]. 中国当代儿科杂志, 2023, 25(3): 238-243. PMCID: PMC10032064. DOI: 10.7499/j.issn.1008-8830.2209127 .
15
陕西省川崎病诊疗中心/陕西省人民医院儿童病院, 首都医科大学附属北京儿童医院, 上海儿童医学中心, 等. 糖皮质激素在川崎病治疗中的儿科专家共识[J]. 中国当代儿科杂志, 2022, 24(3): 225-231. PMCID: PMC8974659. DOI: 10.7499/j.issn.1008-8830.2112033 .
16
陕西省川崎病诊疗中心/陕西省人民医院儿童病院, 上海交通大学附属儿童医院, 首都医科大学附属北京儿童医院, 等. 阿司匹林在川崎病治疗中的儿科专家共识[J]. 中国当代儿科杂志, 2022, 24(6): 597-603. PMCID: PMC9250407. DOI: 10.7499/j.issn.1008-8830.2203190 .
17
Smith J. Daily briefing: the pros and cons of DeepSeek[J]. Nature, 2025. Epub ahead of print. DOI: 10.1038/d41586-025-00330-w .
18
Temsah A, Alhasan K, Altamimi I, et al. DeepSeek in healthcare: revealing opportunities and steering challenges of a new open-source artificial intelligence frontier[J]. Cureus, 2025, 17(2): e79221. PMCID: PMC11836063. DOI: 10.7759/cureus.79221 .
19
中华医学会儿科学分会心血管学组, 中华医学会儿科学分会风湿学组, 中华医学会儿科学分会免疫学组, 等. 川崎病诊断和急性期治疗专家共识[J]. 中华儿科杂志, 2022, 60(1): 6-13. DOI: 10.3760/cma.j.cn112140-20211018-00879 .
20
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1): 44-56. DOI: 10.1038/s41591-018-0300-7 .

潘炎负责文献检索、论文的初稿撰写;焦富勇指导论文写作并修订论文内容。

PDF(514 KB)

Accesses

Citation

Detail

Sections
Recommended

/