PDF(529 KB)
Recent advances in artificial intelligence for auxiliary diagnosis and management of neonatal necrotizing enterocolitis
Qi JIANG, Li ZHANG
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (10) : 1281-1285.
PDF(529 KB)
PDF(529 KB)
Recent advances in artificial intelligence for auxiliary diagnosis and management of neonatal necrotizing enterocolitis
Necrotizing enterocolitis (NEC) is a life-threatening gastrointestinal disease of neonates with a multifactorial pathogenesis involving prematurity, low birth weight, hypoxia, infection, and immune dysregulation. Owing to its superior data processing and diagnostic capabilities, artificial intelligence (AI) has been increasingly applied to support clinical care. By analyzing clinical and imaging data, AI approaches can aid in early identification, differential diagnosis, treatment decision-making, and prognostic evaluation, thereby complementing clinician judgment. This review summarizes recent advances in the application of AI and machine learning for NEC diagnosis and management, comparing the characteristics and strengths of different algorithms. The aim is to provide a reference for further development and implementation of AI-assisted tools in this field.
Necrotizing enterocolitis / Artificial intelligence / Machine learning / Neonate
| [1] |
马乐, 唐小晶, 王义. 基于血流动力学监测的乌司他丁在新生儿坏死性小肠结肠炎的临床研究[J]. 中国实用儿科杂志, 2023, 38(2): 119-124. DOI: 10.19538/j.ek2023020609 .
|
| [2] |
|
| [3] |
邓智月, 徐凤丹, 何晓光, 等. 贫血与新生儿坏死性小肠结肠炎发病关系的研究进展[J]. 中国当代儿科杂志, 2024, 26(6): 646-651. PMCID: PMC11562064. DOI: 10.7499/j.issn.1008-8830.2312089 .
|
| [4] |
|
| [5] |
|
| [6] |
王惠萍, 王莉, 高琼, 等. 极低出生体重坏死性小肠结肠炎患儿体格及神经发育的研究[J]. 中国儿童保健杂志, 2023, 31(1): 96-100. DOI: 10.11852/zgetbjzz2022-0621 .
|
| [7] |
王姗姗, 蔡金洋, 史爱武, 等. 肠道微生物稳态对坏死性小肠结肠炎新生大鼠模型造血系统的影响[J]. 中国当代儿科杂志, 2023, 25(8): 855-863. PMCID: PMC10484087. DOI: 10.7499/j.issn.1008-8830.2301082 .
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
杨启越, 张新华, 贾晓云, 等. 新生儿坏死性小肠结肠炎相关因素研究[J]. 中华流行病学杂志, 2025, 46(3): 492-498. DOI: 10.3760/cma.j.cn112338-20240826-00526 .
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
李振宇. 基于机器学习算法的早产儿坏死性小肠结肠炎预测模型的建立[D]. 长春: 吉林大学, 2022.
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
所有作者均声明无利益冲突。