Plasma lipidomics-based exploration of potential biomarkers of metastasis in pediatric medulloblastoma

Chun-Jing YANG, Xi-Qiao XU, Li BAO, Wan-Shui WU, De-Chun JIANG, Zheng-Yuan SHI

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (11) : 1384-1390.

PDF(810 KB)
HTML
PDF(810 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (11) : 1384-1390. DOI: 10.7499/j.issn.1008-8830.2503030
CLINICAL RESEARCH

Plasma lipidomics-based exploration of potential biomarkers of metastasis in pediatric medulloblastoma

Author information +
History +

Abstract

Objective To identify potential plasma lipidomic biomarkers that distinguish non-metastatic medulloblastoma (nmMB) from metastatic medulloblastoma (mMB) in children. Methods In this prospective study, 17 children with mMB and 20 matched children with nmMB were enrolled. Plasma samples were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Lipid metabolites were evaluated for their associations and diagnostic performance. Results Orthogonal partial least squares discriminant analysis based on lipid profiles clearly separated nmMB from mMB, and 14 differential lipids were identified, including DG(18:2/20:4/0:0) and SM(d18:1/20:0). Receiver operating characteristic analysis showed nine metabolites with area under the curve greater than 0.7. Differential lipids were enriched in sphingolipid, glycerophospholipid, and arachidonic acid metabolism, suggesting an association with the metastatic phenotype. Conclusions Plasma lipidomics provides a new approach to identify mMB, and the identified lipid metabolites may support early diagnosis and treatment, prognostic assessment, and selection of therapeutic targets for metastatic medulloblastoma.

Key words

Medulloblastoma / Potential biomarker / Metastasis / Lipidomics / Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry / Child

Cite this article

Download Citations
Chun-Jing YANG , Xi-Qiao XU , Li BAO , et al . Plasma lipidomics-based exploration of potential biomarkers of metastasis in pediatric medulloblastoma[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(11): 1384-1390 https://doi.org/10.7499/j.issn.1008-8830.2503030

References

[1]
Bautista F, Fioravantti V, de Rojas T, et al. Medulloblastoma in children and adolescents: a systematic review of contemporary phase I and II clinical trials and biology update[J]. Cancer Med, 2017, 6(11): 2606-2624. PMCID: PMC5673921. DOI: 10.1002/cam4.1171 .
[2]
Rolland A, Aquilina K. Surgery for recurrent medulloblastoma: a review[J]. Neurochirurgie, 2021, 67(1): 69-75. DOI: 10.1016/j.neuchi.2019.06.008 .
[3]
Li M, Deng Y, Zhang W. Molecular determinants of medulloblastoma metastasis and leptomeningeal dissemination[J]. Mol Cancer Res, 2021, 19(5): 743-752. DOI: 10.1158/1541-7786.MCR-20-1026 .
[4]
Wang R, Li B, Lam SM, et al. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression[J]. J Genet Genomics, 2020, 47(2): 69-83. DOI: 10.1016/j.jgg.2019.11.009 .
[5]
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, et al. The role of lipids in cancer progression and metastasis[J]. Cell Metab, 2022, 34(11): 1675-1699. DOI: 10.1016/j.cmet.2022.09.023 .
[6]
Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664): 453-457. PMCID: PMC5667900. DOI: 10.1038/nature23007 .
[7]
Gong J, Lin Y, Zhang H, et al. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells[J]. Cell Death Dis, 2020, 11(4): 267. PMCID: PMC7181758. DOI: 10.1038/s41419-020-2434-z .
[8]
Jarmusch AK, Pirro V, Baird Z, et al. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS[J]. Proc Natl Acad Sci U S A, 2016, 113(6): 1486-1491. PMCID: PMC4760779. DOI: 10.1073/pnas.1523306113 .
[9]
尤铂文, 单军奇, 姚瑶, 等. 血浆代谢相关生物标志物检测在转移性结直肠癌诊断中的应用[J]. 中华肿瘤防治杂志, 2024, 31(7): 420-425. DOI: 10.16073/j.cnki.cjcpt.2024.07.05 .
[10]
Wang Y. Applications of lipidomics in tumor diagnosis and therapy[J]. Adv Exp Med Biol, 2021, 1316: 25-39. DOI: 10.1007/978-981-33-6785-2_2 .
[11]
Bergers G, Fendt SM. The metabolism of cancer cells during metastasis[J]. Nat Rev Cancer, 2021, 21(3): 162-180. PMCID: PMC8733955. DOI: 10.1038/s41568-020-00320-2 .
[12]
Paine MRL, Liu J, Huang D, et al. Three-dimensional mass spectrometry imaging identifies lipid markers of medulloblastoma metastasis[J]. Sci Rep, 2019, 9(1): 2205. PMCID: PMC6379434. DOI: 10.1038/s41598-018-38257-0 .
[13]
Stoica C, Ferreira AK, Hannan K, et al. Bilayer forming phospholipids as targets for cancer therapy[J]. Int J Mol Sci, 2022, 23(9): 5266. PMCID: PMC9100777. DOI: 10.3390/ijms23095266 .
[14]
Lima LG, Chammas R, Monteiro RQ, et al. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner[J]. Cancer Lett, 2009, 283(2): 168-175. DOI: 10.1016/j.canlet.2009.03.041 .
[15]
Jantscheff P, Schlesinger M, Fritzsche J, et al. Lysophosphatidylcholine pretreatment reduces VLA-4 and P-selectin-mediated b16.f10 melanoma cell adhesion in vitro and inhibits metastasis-like lung invasion in vivo [J]. Mol Cancer Ther, 2011, 10(1): 186-197. DOI: 10.1158/1535-7163.MCT-10-0474 .
[16]
Zhang L, Liu X, Liu Y, et al. Lysophosphatidylcholine inhibits lung cancer cell proliferation by regulating fatty acid metabolism enzyme long-chain acyl-coenzyme A synthase 5[J]. Clin Transl Med, 2023, 13(1): e1180. PMCID: PMC9839868. DOI: 10.1002/ctm2.1180 .
[17]
Zheng K, Chen Z, Feng H, et al. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin[J]. Cell Death Dis, 2019, 10(3): 157. PMCID: PMC6377618. DOI: 10.1038/s41419-019-1303-0 .
[18]
van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018, 13(1): e0185969. PMCID: PMC5773003. DOI: 10.1371/journal.pone.0185969 .
[19]
Zhou X, Huang F, Ma G, et al. Dysregulated ceramides metabolism by fatty acid 2-hydroxylase exposes a metabolic vulnerability to target cancer metastasis[J]. Signal Transduct Target Ther, 2022, 7(1): 370. PMCID: PMC9588768. DOI: 10.1038/s41392-022-01199-1 .
[20]
Shen L, Liu J, Hu F, et al. Single-cell RNA sequencing reveals aberrant sphingolipid metabolism in non-small cell lung cancer impacts tumor-associated macrophages and stimulates angiogenesis via macrophage inhibitory factor signaling[J]. Thorac Cancer, 2024, 15(14): 1164-1175. PMCID: PMC11091791. DOI: 10.1111/1759-7714.15283 .
[21]
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(10): 802-821. PMCID: PMC12034107. DOI: 10.1038/s41580-024-00742-y .
[22]
Yin B, Yang Y, Zhao Z, et al. Arachidonate 12-lipoxygenase may serve as a potential marker and therapeutic target for prostate cancer stem cells[J]. Int J Oncol, 2011, 38(4): 1041-1046. PMCID: PMC4560359. DOI: 10.3892/ijo.2011.901 .

Footnotes

所有作者均声明无利益冲突。

PDF(810 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/