Development of dynamic multi-time-point clinical prediction models for bronchopulmonary dysplasia in preterm infants with gestational age < 32 weeks

Wen LI, Xue-Fei ZHANG, Xiao-Ri HE, Tao WANG, Jing-Tao HU, Wen LI, Qing-Yi DONG, Xiao-Yun GONG, Yong-Hui YANG, Ping-Yang CHEN

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (12) : 1464-1474.

PDF(1621 KB)
HTML
PDF(1621 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (12) : 1464-1474. DOI: 10.7499/j.issn.1008-8830.2503200
CLINICAL RESEARCH

Development of dynamic multi-time-point clinical prediction models for bronchopulmonary dysplasia in preterm infants with gestational age < 32 weeks

Author information +
History +

Abstract

Objective To develop dynamic prediction models based on multiple postnatal time points to support early diagnosis and individualized intervention for bronchopulmonary dysplasia (BPD) in preterm infants with gestational age < 32 weeks. Methods Clinical data of 472 preterm infants with gestational age <32 weeks admitted to the Second Xiangya Hospital of Central South University between January 2016 and November 2020 were retrospectively analyzed. Multivariable logistic regression was applied to develop five independent prediction models at postnatal days 1, 7, 14, 21, and 28. The performance of the models was assessed using the area under the receiver operating characteristic curve (AUC) and the Hosmer-Lemeshow test. Results Baseline characteristics such as gestational age and birth weight differed significantly between the BPD group (n=147) and the non-BPD group (n=325) (P<0.05). Predictors of BPD evolved across time points: on day 1, key predictors included gestational age, birth weight, Score for Neonatal Acute Physiology II (SNAP-II), invasive mechanical ventilation, and fraction of inspired oxygen >30%; by day 7, additional variables emerged, including fasting duration >2 days, mean feeding advancement rate <8.5 mL/(kg·d), neonatal respiratory distress syndrome, apnea of prematurity, and positive sputum culture; from day 14 onward, nutrition- and treatment-related indicators were incorporated additionally. The models demonstrated good discrimination at postnatal days 1, 7, 14, 21, and 28, with AUCs of 0.917, 0.927, 0.939, 0.944, and 0.968, respectively, and good calibration (Hosmer-Lemeshow P>0.05). Internal validation showed AUCs ranging from 0.899 to 0.958, indicating robust performance. Conclusions Dynamic postnatal prediction models incorporating indicators spanning perinatal factors, respiratory support, nutritional management, and therapeutic interventions demonstrate high predictive performance and facilitate dynamic risk assessment for BPD in preterm infants with gestational age < 32 weeks.

Key words

Bronchopulmonary dysplasia / Risk prediction model / Preterm infant

Cite this article

Download Citations
Wen LI , Xue-Fei ZHANG , Xiao-Ri HE , et al . Development of dynamic multi-time-point clinical prediction models for bronchopulmonary dysplasia in preterm infants with gestational age < 32 weeks[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(12): 1464-1474 https://doi.org/10.7499/j.issn.1008-8830.2503200

References

[1]
周应祯, 王婷, 付星梦, 等. 支气管肺发育不良的预后[J]. 中国当代儿科杂志, 2025, 27(1): 115-120. PMCID: PMC11750241. DOI: 10.7499/j.issn.1008-8830.2406004 .
[2]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. PMCID: PMC4787615. DOI: 10.1001/jama.2015.10244 .
[3]
江苏省新生儿围产期协作网. 胎龄<32周早产儿中重度支气管肺发育不良危险因素的多中心回顾性分析[J]. 中国当代儿科杂志, 2022, 24(10): 1104-1110. PMCID: PMC9627994. DOI: 10.7499/j.issn.1008-8830.2204145 .
[4]
Blencowe H, Cousens S, Chou D, et al. Born too soon: the global epidemiology of 15 million preterm births[J]. Reprod Health, 2013, 10(Suppl 1): S2. PMCID: PMC3828585. DOI: 10.1186/1742-4755-10-S1-S2 .
Suppl 1
[5]
Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974. DOI: 10.1136/bmj.n1974 .
[6]
Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. PMCID: PMC5970962. DOI: 10.1016/j.jpeds.2018.01.043 .
[7]
Ramaswamy VV, Bandyopadhyay T, Nanda D, et al. Assessment of postnatal corticosteroids for the prevention of bronchopulmonary dysplasia in preterm neonates: a systematic review and network meta-analysis[J]. JAMA Pediatr, 2021, 175(6): e206826. PMCID: PMC7961472. DOI: 10.1001/jamapediatrics.2020.6826 .
[8]
Kwok TC, Szatkowski L, Sharkey D. Impact of postnatal dexamethasone timing on preterm mortality and bronchopulmonary dysplasia: a propensity score analysis[J]. Eur Respir J, 2023, 62(4): 2300825. PMCID: PMC10586235. DOI: 10.1183/13993003.00825-2023 .
[9]
McEvoy CT, Jain L, Schmidt B, et al. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases[J]. Ann Am Thorac Soc, 2014, 11(Suppl 3): S146-S153. PMCID: PMC4112507. DOI: 10.1513/AnnalsATS.201312-424LD .
Suppl 3
[10]
Romijn M, Dhiman P, Finken MJJ, et al. Prediction models for bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis[J]. J Pediatr, 2023, 258: 113370. DOI: 10.1016/j.jpeds.2023.01.024 .
[11]
Sikdar O, Harris C, Greenough A. Improving early diagnosis of bronchopulmonary dysplasia[J]. Expert Rev Respir Med, 2024, 18(5): 283-294. DOI: 10.1080/17476348.2024.2367584 .
[12]
Laughon MM, Langer JC, Bose CL, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants[J]. Am J Respir Crit Care Med, 2011, 183(12): 1715-1722. PMCID: PMC3136997. DOI: 10.1164/rccm.201101-0055OC .
[13]
Valenzuela-Stutman D, Marshall G, Tapia JL, et al. Bronchopulmonary dysplasia: risk prediction models for very-low-birth-weight infants[J]. J Perinatol, 2019, 39(9): 1275-1281. DOI: 10.1038/s41372-019-0430-x .
[14]
Kwok TC, Batey N, Luu KL, et al. Bronchopulmonary dysplasia prediction models: a systematic review and meta-analysis with validation[J]. Pediatr Res, 2023, 94(1): 43-54. PMCID: PMC10356605. DOI: 10.1038/s41390-022-02451-8 .
[15]
Chien LY, Whyte R, Thiessen P, et al. SNAP-Ⅱ predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit[J]. J Perinatol, 2002, 22(1): 26-30. DOI: 10.1038/sj.jp.7210585 .
[16]
Moreira A, Noronha M, Joy J, et al. Rates of bronchopulmonary dysplasia in very low birth weight neonates: a systematic review and meta-analysis[J]. Respir Res, 2024, 25(1): 219. PMCID: PMC11127341. DOI: 10.1186/s12931-024-02850-x .
[17]
黄静, 林新祝, 郑直, 等. 胎龄<32周且出生体重<1 500 g早产儿支气管肺发育不良的发生及其严重程度的影响因素[J]. 中国当代儿科杂志, 2022, 24(12): 1326-1333. PMCID: PMC9785086. DOI: 10.7499/j.issn.1008-8830.2207013 .
[18]
Younge N, Goldstein RF, Bann CM, et al. Survival and neurodevelopmental outcomes among periviable infants[J]. N Engl J Med, 2017, 376(7): 617-628. PMCID: PMC5456289. DOI: 10.1056/NEJMoa1605566 .
[19]
Walsh MC, Yao Q, Gettner P, et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates[J]. Pediatrics, 2004, 114(5): 1305-1311. DOI: 10.1542/peds.2004-0204 .
[20]
江苏省新生儿重症监护病房母乳质量改进临床研究协作组. 多中心回顾性分析极低及超低出生体重儿支气管肺发育不良的临床特点及高危因素[J]. 中华儿科杂志, 2019, 57(1): 33-39. DOI: 10.3760/cma.j.issn.0578-1310.2019.01.009 .
[21]
Li Y, Yan J, Li M, et al. Addition of SNAP to perinatal risk factors improves the prediction of bronchopulmonary dysplasia or death in critically ill preterm infants[J]. BMC Pediatr, 2013, 13: 138. PMCID: PMC3848452. DOI: 10.1186/1471-2431-13-138 .
[22]
Lee SM, Sie L, Liu J, et al. Evaluation of trends in bronchopulmonary dysplasia and respiratory support practice for very low birth weight infants: a population-based cohort study[J]. J Pediatr, 2022, 243: 47-52.e2. PMCID: PMC8960334. DOI: 10.1016/j.jpeds.2021.11.049 .
[23]
Jensen EA, DeMauro SB, Kornhauser M, et al. Effects of multiple ventilation courses and duration of mechanical ventilation on respiratory outcomes in extremely low-birth-weight infants[J]. JAMA Pediatr, 2015, 169(11): 1011-1017. PMCID: PMC6445387. DOI: 10.1001/jamapediatrics.2015.2401 .
[24]
Karatza AA, Gkentzi D, Varvarigou A. Nutrition of infants with bronchopulmonary dysplasia before and after discharge from the neonatal intensive care unit[J]. Nutrients, 2022, 14(16): 3311. PMCID: PMC9414083. DOI: 10.3390/nu14163311 .
[25]
Bauer SE, Vanderpool CPB, Ren C, et al. Nutrition and growth in infants with established bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2021, 56(11): 3557-3562. DOI: 10.1002/ppul.25638 .
[26]
Roehr CC, Farley HJ, Mahmoud RA, et al. Non-Invasive ventilatory support in preterm neonates in the delivery room and the neonatal intensive care unit: a short narrative review of what we know in 2024[J]. Neonatology, 2024, 121(5): 576-583. PMCID: PMC11446298. DOI: 10.1159/000540601 .
[27]
Sahni M, Bhandari V. Invasive and non-invasive ventilatory strategies for early and evolving bronchopulmonary dysplasia[J]. Semin Perinatol, 2023, 47(6): 151815. DOI: 10.1016/j.semperi.2023.151815 .
[28]
Watterberg KL, Walsh MC, Li L, et al. Hydrocortisone to improve survival without bronchopulmonary dysplasia[J]. N Engl J Med, 2022, 386(12): 1121-1131. PMCID: PMC9107291. DOI: 10.1056/NEJMoa2114897 .

Footnotes

所有作者均声明不存在利益冲突。

PDF(1621 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/