Clinical features and variant spectrum of FGFR3-related disorders

Shi-Li GU, Ling-Wen YING, Guo-Ying CHANG, Xin LI, Juan LI, Yu DING, Ru-En YAO, Ting-Ting YU, Xiu-Min WANG

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (10) : 1259-1265.

PDF(783 KB)
PDF(783 KB)
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (10) : 1259-1265. DOI: 10.7499/j.issn.1008-8830.2504002
CLINICAL RESEARCH

Clinical features and variant spectrum of FGFR3-related disorders

Author information +
History +

Abstract

Objective To study genotype-phenotype correlations in children with FGFR3 variants and to improve clinical recognition of related disorders. Methods Clinical data of 95 patients aged 0-18 years harboring FGFR3 variants, confirmed by whole‑exome sequencing at Shanghai Children's Medical Center from January 2012 to December 2023, were retrospectively reviewed. Detailed phenotypic characterization was performed for 22 patients with achondroplasia (ACH) and 10 with hypochondroplasia (HCH). Results Among the 95 patients, 52 (55%) had ACH, 24 (25%) had HCH, 9 (9%) had thanatophoric dysplasia, 3 (3%) had syndromic skeletal dysplasia, 2 (2%) had severe achondroplasia with developmental delay and acanthosis nigricans, and 5 (5%) remained unclassified. A previously unreported FGFR3 variant, c.1663G>T, was identified. All 22 ACH patients presented with disproportionate short stature accompanied by limb dysplasia, commonly with macrocephaly, a depressed nasal bridge, bowed legs, and frontal bossing; complications were present in 17 (77%). The 10 HCH patients predominantly exhibited disproportionate short stature with limb dysplasia and depressed nasal bridge. Conclusions ACH is the most frequent phenotype associated with FGFR3 variants, and missense variants constitute the predominant variant type. The degree of FGFR3 activation appears to correlate with the clinical severity of skeletal dysplasia.

Key words

Fibroblast growth factor receptor 3 / Genetic variant / Skeletal dysplasia / Achondroplasia / Child

Cite this article

Download Citations
Shi-Li GU , Ling-Wen YING , Guo-Ying CHANG , et al . Clinical features and variant spectrum of FGFR3-related disorders[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(10): 1259-1265 https://doi.org/10.7499/j.issn.1008-8830.2504002

References

[1]
Ornitz DM, Itoh N. Fibroblast growth factors[J]. Genome Biol, 2001, 2(3): REVIEWS3005. PMCID: PMC138918. DOI: 10.1186/gb-2001-2-3-reviews3005 .
[2]
Katoh M. Therapeutics targeting FGF signaling network in human diseases[J]. Trends Pharmacol Sci, 2016, 37(12): 1081-1096. DOI: 10.1016/j.tips.2016.10.003 .
[3]
Shen L, Li Y, Zhao H. Fibroblast growth factor signaling in macrophage polarization: impact on health and diseases[J]. Front Immunol, 2024, 15: 1390453. PMCID: PMC11219802. DOI: 10.3389/fimmu.2024.1390453 .
[4]
Wilkie AO. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations[J]. Cytokine Growth Factor Rev, 2005, 16(2): 187-203. DOI: 10.1016/j.cytogfr.2005.03.001 .
[5]
Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans[J]. Endocr Rev, 2000, 21(1): 23-39. DOI: 10.1210/edrv.21.1.0387 .
[6]
Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias[J]. Hum Mutat, 2012, 33(1): 29-41. PMCID: PMC3240715. DOI: 10.1002/humu.21636 .
[7]
Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction[J]. Trends Cell Biol, 2015, 25(4): 221-233. DOI: 10.1016/j.tcb.2014.11.003 .
[8]
Helsten T, Elkin S, Arthur E, et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing[J]. Clin Cancer Res, 2016, 22(1): 259-267. DOI: 10.1158/1078-0432.CCR-14-3212 .
[9]
Gallo LH, Nelson KN, Meyer AN, et al. Functions of fibroblast growth factor receptors in cancer defined by novel translocations and mutations[J]. Cytokine Growth Factor Rev, 2015, 26(4): 425-449. DOI: 10.1016/j.cytogfr.2015.03.003 .
[10]
中国医师协会医学遗传医师分会, 中华医学会儿科学分会内分泌遗传代谢学组, 中华医学会儿科学分会罕见病学组, 等. 软骨发育不全诊断及治疗专家共识[J]. 中华儿科杂志, 2021, 59(7): 545-550. DOI: 10.3760/cma.j.cn112140-20201229-01142 .
[11]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30 .
[12]
Perez-Castro AV, Wilson J, Altherr MR. Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene and comparative sequence analysis with the mouse Fgfr3 gene[J]. Genomics, 1997, 41(1): 10-16. DOI: 10.1006/geno.1997.4616 .
[13]
Winterpacht A, Hilbert K, Stelzer C, et al. A novel mutation in FGFR-3 disrupts a putative N-glycosylation site and results in hypochondroplasia[J]. Physiol Genomics, 2000, 2(1): 9-12. DOI: 10.1152/physiolgenomics.2000.2.1.9 .
[14]
Liu Q, Huang J, Yan W, et al. FGFR families: biological functions and therapeutic interventions in tumors[J]. MedComm (2020), 2023, 4(5): e367. PMCID: PMC10518040. DOI: 10.1002/mco2.367 .
[15]
Fafilek B, Bosakova M, Krejci P. Expanding horizons of achondroplasia treatment: current options and future developments[J]. Osteoarthritis Cartilage, 2022, 30(4): 535-544. DOI: 10.1016/j.joca.2021.11.017 .
[16]
Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting[J]. Biochem Soc Trans, 2018, 46(6): 1753-1770. PMCID: PMC6299260. DOI: 10.1042/BST20180004 .
[17]
Tavormina PL, Shiang R, Thompson LM, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3[J]. Nat Genet, 1995, 9(3): 321-328. DOI: 10.1038/ng0395-321 .
[18]
Rousseau F, el Ghouzzi V, Delezoide AL, et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1)[J]. Hum Mol Genet, 1996, 5(4): 509-512. DOI: 10.1093/hmg/5.4.509 .
[19]
Naski MC, Wang Q, Xu J, et al. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia[J]. Nat Genet, 1996, 13(2): 233-237. DOI: 10.1038/ng0696-233 .
[20]
d'Avis PY, Robertson SC, Meyer AN, et al. Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I[J]. Cell Growth Differ, 1998, 9(1): 71-78.
[21]
Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia[J]. EMBO J, 1996, 15(3): 520-527. PMCID: PMC449970.
[22]
Li E, You M, Hristova K. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation[J]. J Mol Biol, 2006, 356(3): 600-612. PMCID: PMC3812913. DOI: 10.1016/j.jmb.2005.11.077 .
[23]
Monsonego-Ornan E, Adar R, Feferman T, et al. The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation[J]. Mol Cell Biol, 2000, 20(2): 516-522. PMCID: PMC85119. DOI: 10.1128/MCB.20.2.516-522.2000 .
[24]
Lievens PM, Roncador A, Liboi E. K644E/M FGFR3 mutants activate Erk1/2 from the endoplasmic reticulum through FRS2 alpha and PLC gamma-independent pathways[J]. J Mol Biol, 2006, 357(3): 783-792. DOI: 10.1016/j.jmb.2006.01.058 .
[25]
Lievens PM, Mutinelli C, Baynes D, et al. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling[J]. J Biol Chem, 2004, 279(41): 43254-43260. DOI: 10.1074/jbc.M405247200 .

Footnotes

所有作者声明无利益冲突。

PDF(783 KB)

Accesses

Citation

Detail

Sections
Recommended

/