The application of machine learning in the auxiliary diagnosis of specific learning disorder

Hao ZHAO, Shu-Lan MEI, Jing-Yu WANG, Xia CHI

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (11) : 1420-1425.

PDF(561 KB)
HTML
PDF(561 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (11) : 1420-1425. DOI: 10.7499/j.issn.1008-8830.2504089
REVIEW

The application of machine learning in the auxiliary diagnosis of specific learning disorder

Author information +
History +

Abstract

Specific learning disorder (SLD) is a common neurodevelopmental disorder in children that significantly affects academic performance and quality of life. At present, diagnosis mainly relies on standardized tests and professional evaluations, a process that is complex and time-consuming. Multiple studies have shown that machine learning can analyze diverse data, including test scores, handwriting samples, eye movement data, neuroimaging data, and genetic data, to automatically learn the relationships between input features and output labels and achieve efficient prediction. It shows great potential for early screening, auxiliary diagnosis, and research on underlying mechanisms in SLD. This article reviews the applications of machine learning in the auxiliary diagnosis of SLD and discusses its performance when handling different data types.

Key words

Specific learning disorder / Dyslexia / Auxiliary diagnosis / Machine learning

Cite this article

Download Citations
Hao ZHAO , Shu-Lan MEI , Jing-Yu WANG , et al. The application of machine learning in the auxiliary diagnosis of specific learning disorder[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(11): 1420-1425 https://doi.org/10.7499/j.issn.1008-8830.2504089

References

[1]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders[M]. 5th ed. Washington, DC, USA: APA, 2022.
[2]
National Center for Learning Disabilities. State of learning disabilities: navigating the transition to adulthood[EB/OL]. [2025-2-15].
[3]
Binson VA, Thomas S, Subramoniam M, et al. A review of machine learning algorithms for biomedical applications[J]. Ann Biomed Eng, 2024, 52(5): 1159-1183. DOI: 10.1007/s10439-024-03459-3 .
[4]
Rashidi HH, Tran NK, Betts EV, et al. Artificial intelligence and machine learning in pathology: the present landscape of supervised methods[J]. Acad Pathol, 2019, 6: 2374289519873088. PMCID: PMC6727099. DOI: 10.1177/2374289519873088 .
[5]
Eltouny K, Gomaa M, Liang X. Unsupervised learning methods for data-driven vibration-based structural health monitoring: a review[J]. Sensors (Basel), 2023, 23(6): 3290. PMCID: PMC10058635. DOI: 10.3390/s23063290 .
[6]
Weltz J, Volfovsky A, Laber EB. Reinforcement learning methods in public health[J]. Clin Ther, 2022, 44(1): 139-154. DOI: 10.1016/j.clinthera.2021.11.002 .
[7]
Iwabuchi M, Hirabayashi R, Nakamura K, et al. Machine learning based evaluation of reading and writing difficulties[J]. Stud Health Technol Inform, 2017, 242: 1001-1004. DOI: 10.3233/978-1-61499-798-6-1001 .
[8]
Subramanyam A, Jyrwa S, Bansinghani JM, et al. Dyscalculia detection using machine learning[C]//Pattern Recognition and Machine Intelligence, Cham: Springer International Publishing, 2019: 111-120.
[9]
Price KM, Wigg KG, Misener VL, et al. Language difficulties in school-age children with developmental dyslexia[J]. J Learn Disabil, 2022, 55(3): 200-212. PMCID: PMC8996296. DOI: 10.1177/00222194211006207 .
[10]
Chen A, Wijnen F, Koster C, et al. Individualized early prediction of familial risk of dyslexia: a study of infant vocabulary development[J]. Front Psychol, 2017, 8: 156. PMCID: PMC5318442. DOI: 10.3389/fpsyg.2017.00156 .
[11]
Wang R, Bi HY. A predictive model for Chinese children with developmental dyslexia: based on a genetic algorithm optimized back-propagation neural network[J]. Expert Syst Appl, 2022, 187: 115949. DOI: 10.1016/j.eswa.2021.115949 .
[12]
Danna J, Puyjarinet F, Jolly C. Tools and methods for diagnosing developmental dysgraphia in the digital age: a state of the art[J]. Children (Basel), 2023, 10(12): 1925. PMCID: PMC10741997. DOI: 10.3390/children10121925 .
[13]
Rosenblum S, Dror G. Identifying developmental dysgraphia characteristics utilizing handwriting classification methods[J]. IEEE Trans Hum Mach Syst, 2017, 47(2): 293-298. DOI: 10.1109/THMS.2016.2628799 .
[14]
Zvoncak V, Mekyska J, Safarova K, et al. New approach of dysgraphic handwriting analysis based on the tunable Q-factor wavelet transform[C]//2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Piscataway, NJ, USA: IEEE, 2019: 289-294.
[15]
Devillaine L, Lambert R, Boutet J, et al. Analysis of graphomotor tests with machine learning algorithms for an early and universal pre-diagnosis of dysgraphia[J]. Sensors (Basel), 2021, 21(21): 7026. PMCID: PMC8588387. DOI: 10.3390/s21217026 .
[16]
Drotár P, Dobeš M. Dysgraphia detection through machine learning[J]. Sci Rep, 2020, 10(1): 21541. PMCID: PMC7725992. DOI: 10.1038/s41598-020-78611-9 .
[17]
Kunhoth J, Al Maadeed S, Saleh M, et al. Exploration and analysis of on-surface and in-air handwriting attributes to improve dysgraphia disorder diagnosis in children based on machine learning methods[J]. Biomed Signal Process Control, 2023, 83: 104715. DOI: 10.1016/j.bspc.2023.104715 .
[18]
Amini M, Targhi AT, Hosseinzadeh M, et al. The impact of in-air features on the diagnosis of developmental dysgraphia[J]. J Intell Fuzzy Syst, 2023, 44(1): 1413-1424. DOI: 10.3233/JIFS-221708 .
[19]
Deschamps L, Devillaine L, Gaffet C, et al. Development of a pre-diagnosis tool based on machine learning algorithms on the BHK test to improve the diagnosis of dysgraphia[J]. Adv Artif Intell Mach Learn, 2021, 1(2): 114-135. DOI: 10.54364/AAIML.2021.1108 .
[20]
Bublin M, Werner F, Kerschbaumer A, et al. Handwriting evaluation using deep learning with SensoGrip[J]. Sensors (Basel), 2023, 23(11): 5215. PMCID: PMC10255959. DOI: 10.3390/s23115215 .
[21]
Kunhoth J, Al Maadeed S, Saleh M, et al. CNN feature and classifier fusion on novel transformed image dataset for dysgraphia diagnosis in children[J]. Expert Syst Appl, 2023, 231: 120740. DOI: 10.1016/j.eswa.2023.120740 .
[22]
Ramlan SA, Isa IS, Osman MK, et al. Comparing CNN-based architectures for dysgraphia handwriting classification performance[J]. Pertanika J Sci Technol, 2024, 32(5): 2013-2032. DOI: 10.47836/pjst.32.5.05 .
[23]
Liu HW, Wang S, Tong SX. DysDiTect: dyslexia identification using CNN-positional-LSTM-attention modeling with Chinese dictation task[J]. Brain Sci, 2024, 14(5): 444. PMCID: PMC11118011. DOI: 10.3390/brainsci14050444 .
[24]
Macambira YKDS, Barbosa JVDS, Queiroga BM, et al. Ocular findings from otoneurological examinations in children with and without dyslexia: a systematic review with meta-analysis[J]. Braz J Otorhinolaryngol, 2022, 88(Suppl 3): S192-S201. PMCID: PMC9760992. DOI: 10.1016/j.bjorl.2021.10.006 .
Suppl 3
[25]
Weiss B, Nárai Á, Vidnyánszky Z. Lateralization of early orthographic processing during natural reading is impaired in developmental dyslexia[J]. Neuroimage, 2022, 258: 119383. DOI: 10.1016/j.neuroimage.2022.119383 .
[26]
Vajs I, Ković V, Papić T, et al. Spatiotemporal eye-tracking feature set for improved recognition of dyslexic reading patterns in children[J]. Sensors (Basel), 2022, 22(13): 4900. PMCID: PMC9269601. DOI: 10.3390/s22134900 .
[27]
Vajs I, Papić T, Ković V, et al. Accessible dyslexia detection with real-time reading feedback through robust interpretable eye-tracking features[J]. Brain Sci, 2023, 13(3): 405. PMCID: PMC10046816. DOI: 10.3390/brainsci13030405 .
[28]
Appadurai JP, Bhargavi R. Eye movement feature set and predictive model for dyslexia: feature set and predictive model for dyslexia[J]. Int J Cogn Inform Nat Intell, 2021, 15(4): 1-22. DOI: 10.4018/IJCINI.20211001.oa28 .
[29]
Jothi Prabha A, Bhargavi R. Predictive model for dyslexia from fixations and saccadic eye movement events[J]. Comput Methods Programs Biomed, 2020, 195: 105538. DOI: 10.1016/j.cmpb.2020.105538 .
[30]
JothiPrabha A, Bhargavi R, Deepa Rani BV. Prediction of dyslexia severity levels from fixation and saccadic eye movement using machine learning[J]. Biomed Signal Process Control, 2023, 79, Part 1: 104094. DOI: 10.1016/j.bspc.2022.104094 .
[31]
El Hmimdi AE, Ward LM, Palpanas T, et al. Predicting dyslexia and reading speed in adolescents from eye movements in reading and non-reading tasks: a machine learning approach[J]. Brain Sci, 2021, 11(10): 1337. PMCID: PMC8534067. DOI: 10.3390/brainsci11101337 .
[32]
El Hmimdi AE, Ward LM, Palpanas T, et al. Predicting dyslexia in adolescents from eye movements during free painting viewing[J]. Brain Sci, 2022, 12(8): 1031. PMCID: PMC9405842. DOI: 10.3390/brainsci12081031 .
[33]
Piazzalunga C, Dui LG, Termine C, et al. Investigating visual perception impairments through serious games and eye tracking to anticipate handwriting difficulties[J]. Sensors (Basel), 2023, 23(4): 1765. PMCID: PMC9958538. DOI: 10.3390/s23041765 .
[34]
Cui Z, Xia Z, Su M, et al. Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach[J]. Hum Brain Mapp, 2016, 37(4): 1443-1458. PMCID: PMC6867308. DOI: 10.1002/hbm.23112 .
[35]
Zainuddin AZA, Mansor W, Lee KY, et al. Comparison of extreme learning machine and K-nearest neighbour performance in classifying EEG signal of normal, poor and capable dyslexic children[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway, NJ, USA: IEEE, 2019: 4513-4516.
[36]
Seshadri NPG, Singh BK, Pachori RB. EEG based functional brain network analysis and classification of dyslexic children during sustained attention task[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 4672-4682. DOI: 10.1109/TNSRE.2023.3335806 .
[37]
Zaree M, Mohebbi M, Rostami R. An ensemble-based machine learning technique for dyslexia detection during a visual continuous performance task[J]. Biomed Signal Process Control, 2023, 86, Part B: 105224. DOI: 10.1016/j.bspc.2023.105224 .
[38]
McNorgan C. The connectivity fingerprints of highly-skilled and disordered reading persist across cognitive domains[J]. Front Comput Neurosci, 2021, 15: 590093. PMCID: PMC7907163. DOI: 10.3389/fncom.2021.590093 .
[39]
Zahia S, Garcia-Zapirain B, Saralegui I, et al. Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging[J]. Comput Methods Programs Biomed, 2020, 197: 105726. DOI: 10.1016/j.cmpb.2020.105726 .
[40]
Tomaz Da Silva L, Esper NB, Ruiz DD, et al. Visual explanation for identification of the brain bases for developmental dyslexia on fMRI data[J]. Front Comput Neurosci, 2021, 15: 594659. PMCID: PMC8458961. DOI: 10.3389/fncom.2021.594659 .
[41]
Lancaster HS, Liu X, Dinu V, et al. Identifying interactive biological pathways associated with reading disability[J]. Brain Behav, 2020, 10(8): e01735. PMCID: PMC7428467. DOI: 10.1002/brb3.1735 .
[42]
Zhong S, Song S, Tang T, et al. DYPA: a machine learning dyslexia prescreening mobile application for Chinese children[J]. Proc ACM Interact Mob Wearable Ubiquitous Technol, 2023, 7(3): 143. DOI: 10.1145/3610908 .

Footnotes

所有作者声明无利益冲突。

PDF(561 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/