Pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension

SANG Kui, ZHOU Ying, LI Ming-Xia

Chinese Journal of Contemporary Pediatrics ›› 2012, Vol. 14 ›› Issue (3) : 210-214.

PDF(1120 KB)
PDF(1120 KB)
Chinese Journal of Contemporary Pediatrics ›› 2012, Vol. 14 ›› Issue (3) : 210-214.
EXPERIMENTAL RESEARCH

Pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension

  • SANG Kui, ZHOU Ying, LI Ming-Xia
Author information +
History +

Abstract

OBJECTIVE: To study the changes of pulmonary vascular remodeling in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH) in neonatal rats. METHODS: Ninety-six newborn Wistar rats were randomly divided into an HPH group (hypoxia exposure) and a control group (room air exposure). The mean pulmonary arteria pressure (mPAP), right ventricle hypertrophy index (RVHI), and vascular remodeling indexes MT% and MA% were measured 3, 5, 7, 10, 14 and 21 days after exposure (n=8 each time point). The ultrastructure of pulmonary vascular was observed under a transmission electron microscope. RESULTS: mPAP in the HPH group 3, 5, 7, 10, 14 and 21 days after hypoxia exposure increased compared with the control group (P<0.05). With the prolonged hypoxia time, mPAP in the HPH group increased more significantly. MT%, MA% and RVHI increased significantly in the HPH group after 7 days of hypoxia exposure in a time-dependent manner compared with the control group (P<0.05). The transmission electron microscopy demonstrated that small pulmonary arterials became thickened, endothelial cell hyperplasia and degeneration, and organelles increased in the HPH group after 7 days of hypoxia exposure. Besides, collagen deposition in the extracellular matrix and the changes of pulmonary vascular remodeling were observed. CONCLUSIONS: mPAP increases between 3 and 5 days of hypoxia exposure, resulting from pulmonary vascular spasm caused by hypoxia. After hypoxia of 7 days, the mPAP increases more significantly, pulmonary vascular remodeling occurs, and right ventricle becomes irreversibly hypertrophic. These changes may be intensified as the prolonged hypoxia time.

Key words

Pulmonary hypertension / Vascular remodeling / Neonatal rats

Cite this article

Download Citations
SANG Kui, ZHOU Ying, LI Ming-Xia. Pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension[J]. Chinese Journal of Contemporary Pediatrics. 2012, 14(3): 210-214

References

[1]Greenough A, Khetriwal B. Pulmonary hypertension in the newborn[J]. Peadiatr Respir Rev, 2005, 6(2): 111-116.

[2]杜军保,齐建光. 肺动脉高压发病机制的新进展[J]. 武警医学,2006,17(11):803-806.

[3]王红,张永红,李明霞. 缺氧性肺动脉高压发病机制研究进展[J].中国实用儿科杂志,2009,24(3):227-230.

[4]李启芳,戴爱国. 缺氧诱导因子-1α调控血管内皮生长因子对大鼠缺氧性肺动脉高压的作用[J]. 中华结核和呼吸杂志, 2004, 27(3):174-178.

[5]汤秀英,杜军保. 实验性缺氧性肺动脉高压肺腺泡内动脉的超微结构观察[J]. 电子显微学报, 2004, 23(5):523-526.

[6]蒋永亮,戴爱国,李启芳,胡瑞成. 转化生长因子β1与诱导型一氧化氮合酶相互调控对大鼠低氧性肺动脉高压的作用[J]. 中华结核和呼吸杂志, 2005, 28(7):453-457.

[7]杜军保,唐朝枢. 肺动脉高压[M]// 北京:北京大学医学出版社, 2010:24-90.

[8]Kubo K, Ge RL, Koizumi T, Fujimoto K, Yamanda T, Haniuda M, et al. Pulmonary artery remodeling modifies pulmonary hypertension during exercise in severe emphysema[J]. Respir Physiol, 2000, 120(1): 71-79.

[9]王莉, 朱艳萍, 李明霞. HIF-1α、ET-1和iNOS在新生儿缺氧性肺动脉高压发病中的作用[J].中国当代儿科杂志, 2011, 13(1):8-11.

[10]钟小宁,梁国容,何志义,陈一强,李山,李超乾. 血管内皮生长因子和内皮素在低氧性肺血管重建中的作用[J]. 中华内科杂志, 2001,40(8): 525-528.

[11]Chassagne C, Eddahibi S, Adamy C, Rideau D, Marotte F, Dubois-Randé JL, et al. Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension[J].Am J Respir Cell Mol Biol, 2000, 22(3): 323-332.

[12]钟小宁, 姚龙.肺血管重建在低氧性肺动脉高压中的作用及其机制[J].中国呼吸与危重监护杂志, 2003, 2(4):58-60.

[13]刘斌, 彭军. 氧化应激和肺动脉高压血管重构[J]. 中国动脉硬化杂志, 2011, 19(6), 539-542.

[14]Xu MH, Gong YS, Su MS, Dai ZY, Dai SS, Bao SZ, et al. Absence of the adenosine A2A receptor confers pulmonary arterial hypertension and increased pulmonary vascular remodeling in mice[J]. J Vasc Res, 2011, 48(2):171-183.

[15]Estrada KD, Chesler NC. Collagen related gene and protein expression changes in the lung in response to chronic hypoxia[J]. Biomech Model Mechanobiol, 2009, 8(4):263-272.

[16]Lu XH, Murphy TC, Nanes MS, Hart CM. PPAR-regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-κB[J]. Am J Physiol Lung Cell MolPhysiol, 2010, 299(4): L559-L566.

[17]Santos S, Peinado VI, Ramirez J, Morales-Blanhir J, Bastos R, Roca J, et al. Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2003, 167(9):1250-1256.
PDF(1120 KB)

Accesses

Citation

Detail

Sections
Recommended

/