Relationship between macrophages and erythropoiesis
ZHANG Ran-Ran
Diagnosis and Treatment Center of Pediatric Blood Diseases, Institute of Hematology and Blood Disease Hospital, Pecking Union Medical College, Chinese Academy of Medical Sciences, Tianjin 300020, China
Abstract Macrophages have two major roles in regulating the dynamic equilibrium in erythropoiesis, promoting the differentiation and maturation of nucleated red blood cells into reticulocytes and removing old red blood cells. A recent mouse study has demonstrated that the phenotype of macrophages in erythroblastic islands is CD169+ VCAM-1+ ER-HR3+ CD11b+ F4/80+ Ly-6G+. Molecular connections between erythroid progenitor cells and central macrophages help to maintain the function and integrity of erythroblastic islands. New research advances in Kruppel-like factor 1 (KLF1) provide new evidence for the important role of macrophages in erythroblastic islands. Macrophages play an important role in erythropoiesis both in sickness and in health, and provide a potential targeted therapy for diseases such as polycythemia vera and beta-thalassemia in the future.
Lee SH, Crocker PR, Westaby S, et al. Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters[J]. J Exp Med, 1988, 168(3): 1193-1198.
[3]
Gutknecht MF, Bouton AH. Functional significance of mononuclear phagocyte populations generated through adult hematopoiesis[J]. J Leukoc Biol, 2014, 96(6): 969-980.
[4]
Leimberg MJ, Prus E, Konijn AM, et al. Macrophages function as a ferritin iron source for cultured human erythroid precursors[J]. J Cell Biochem, 2008, 103(4): 1211-1218.
[5]
Korolnek T, Hamza I. Macrophages and iron trafficking at the birth and death of red cells[J]. Blood, 2015, 125(19): 2893-2897.
[6]
Soni S, Bala S, Gwynn B, et al. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion[J]. J Biol Chem, 2006, 281(29): 20181-20189.
[7]
Crocker PR, Werb Z, Gordon S, et al. Ultrastructural localization of a macrophage-restricted sialic acid binding hemagglutinin, SER, in macrophage-hematopoietic cell clusters[J]. Blood, 1990, 76(6): 1131-1138.
[8]
Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche[J]. J Exp Med, 2011, 208(2): 261-271.
[9]
Lee G, Lo A, Short SA, et al. Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation[J]. Blood, 2006, 108(6): 2064-2071.
[10]
Sonoda Y, Sasaki K. Hepatic extramedullary hematopoiesis and macrophages in the adult mouse: histometrical and immunohistochemical studies[J]. Cells Tissues Organs, 2012, 196(6): 555-564.
[11]
Jacobsen RN, Forristal CE, Raggatt LJ, et al. Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ERHR3+ Ly6G+ erythroid island macrophages in the mouse[J]. Exp Hematol, 2014, 42(7): 547-561.
[12]
Chow A, Huggins M, Ahmed J, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress[J]. Nat Med, 2013, 19(4): 429-436.
[13]
Falchi M, Varricchio L, Martelli F, et al. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion[J]. Haematologica, 2015, 100(2): 178-187.
[14]
Chazaud B. Macrophages: supportive cells for tissue repair and regeneration[J]. Immunobiology, 2014, 219(3): 172-178.
[15]
de Back DZ, Kostova EB, van Kraaij M, et al. Of macrophages and red blood cells; a complex love story[J]. Front Physiol, 2014, 5: 9.
[16]
Bader BL, Rayburn H, Crowley D, et al. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins[J]. Cell, 1998, 95(4): 507-519.
[17]
Wang Z, Vogel O, Kuhn G, et al. Decreased stability of erythroblastic islands in integrin β3-deficient mice[J]. Physiol Rep, 2013, 1(2): e00018.
[18]
Spring FA, Griffiths RE, Mankelow TJ, et al. Tetraspanins CD81 and CD82 facilitate alpha4beta1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1[J]. PLoS One, 2013, 8(5): e62654.
[19]
Scott LM, Priestley GV, Papayannopoulou T. Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing[J]. Mol Cell Biol, 2003, 23(24): 9349-9360.
[20]
Ulyanova T, Scott LM, Priestley GV, et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin[J]. Blood, 2005, 106(1): 86-94.
[21]
Ulyanova T, Jiang Y, Padilla S, et al. Combinatorial and distinct roles of alpha(5) and alpha(4) integrins in stress erythropoiesis in mice[J]. Blood, 2011, 117(3): 975-985.
[22]
Ulyanova T, Padilla SM, Papayannopoulou T. Stage-specific functional roles of integrins in murine erythropoiesis[J]. Exp Hematol, 2014, 42(5): 404-409.
[23]
Walkley CR. Erythropoiesis, anemia and the bone marrow microenvironment[J]. Int J Hematol, 2011, 93(1): 10-13.
[24]
Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and betathalassemia[ J]. Nat Med, 2013, 19(4): 437-445.
[25]
Mao X, Shi X, Liu F, et al. Evaluation of erythroblast macrophage protein related to erythroblastic islands in patients with hematopoietic stem cell transplantation[J]. Eur J Med Res, 2013, 18: 9.
[26]
Robier C, Amouzadeh-Ghadikolai O, Bregant C, et al. The anti-VLA-4 antibody natalizumab induces erythroblastaemia in the majority of the treated patients with multiple sclerosis[J]. Mult Scler, 2014, 20(9): 1269-1272.
[27]
Papayannopoulou T, Nakamoto B. Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin[J]. Proc Natl Acad Sci U S A, 1993, 90(20): 9374-9378.
[28]
Jacobsen RN, Perkins AC, Levesque JP. Macrophages and regulation of erythropoiesis[J]. Curr Opin Hematol, 2015, 22(3): 212-219.
[29]
Sui Z, Nowak RB, Bacconi A, et al. Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver[J]. Blood, 2014, 123(5): 758-767.
[30]
Toda S, Segawa K, Nagata S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands[J]. Blood, 2014, 123(25): 3963-3971.
[31]
McGrath KE. Red cell island dances: switching hands[J]. Blood, 2014, 123(25): 3847-3848.
[32]
Tang H, Chen S, Wang H, et al. TAM receptors and the regulation of erythropoiesis in mice[J]. Haematologica, 2009, 94(3): 326-334.
[33]
Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis[J]. Blood, 2011, 118(8): 2044-2054.
[34]
Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq[J]. Genome Res, 2012, 22(12): 2385-2398.
[35]
Porcu S, Manchinu MF, Marongiu MF, et al. Klf1 affects DNase II-alpha expression in the central macrophage of a fetal liver erythroblastic island: a non-cell-autonomous role in definitive erythropoiesis[J]. Mol Cell Biol, 2011, 31(19): 4144-4154.
[36]
Xue L, Galdass M, Gnanapragasam MN, et al. Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche[J]. Development, 2014, 141(11): 2245-2254.
[37]
Kawane K, Fukuyama H, Kondoh G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver[J]. Science, 2001, 292(5521): 1546-1549.
[38]
Jaffray JA, Mitchell WB, Gnanapragasam MN, et al. Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: review of all reported cases and development of a clinical diagnostic paradigm[J]. Blood Cells Mol Dis, 2013, 51(2): 71-75.
[39]
Socolovsky M. Exploring the erythroblastic island[J]. Nat Med, 2013, 19(4): 399-401.
[40]
Strnad M, Todoric Zivanovic B, Tatomirovic Z, et al. JAK2V617F mutation and endogenous erythroid colony formation in patients with polycythaemia vera[J]. J BUON, 2014, 19(4): 985-991.
[41]
Kotsis T, Pappas E, Sarmas G, et al. Carotid endarterectomy in a young symptomatic patient with β-thalassemia major[J]. Ann Vasc Surg, 2015, 29(4): 838. e1-5.