Clinical application of minimal residual disease detection in childhood acute leukemia

CHENG Yan-Qin, ZHAI Xiao-Wen

Chinese Journal of Contemporary Pediatrics ›› 2018, Vol. 20 ›› Issue (5) : 416-420.

PDF(937 KB)
PDF(937 KB)
Chinese Journal of Contemporary Pediatrics ›› 2018, Vol. 20 ›› Issue (5) : 416-420. DOI: 10.7499/j.issn.1008-8830.2018.05.015
REVIEW

Clinical application of minimal residual disease detection in childhood acute leukemia

  • CHENG Yan-Qin, ZHAI Xiao-Wen
Author information +
History +

Abstract

In recent years, great progress has been made in the treatment outcome of childhood acute leukemia with the improvement of chemotherapy regimens and the introduction of risk-stratified therapy; however, minimal residual disease (MRD) is still a difficult problem which affects the prognosis of acute leukemia. MRD influences the selection of chemotherapy regimens and recurrence risk stratification, and meanwhile, it can be used for prognostic prediction. At present, flow cytometry and polymerase chain reaction are mainly used for MRD detection. The next-generation sequencing also plays an important role in MRD detection, especially in MRD detection after stem cell transplantation. This article reviews the methodology and significance of MRD detection in childhood acute leukemia.

Key words

Acute leukemia / Minimal residual disease / Prognosis / Next-generation sequencing / Child

Cite this article

Download Citations
CHENG Yan-Qin, ZHAI Xiao-Wen. Clinical application of minimal residual disease detection in childhood acute leukemia[J]. Chinese Journal of Contemporary Pediatrics. 2018, 20(5): 416-420 https://doi.org/10.7499/j.issn.1008-8830.2018.05.015

References

[1] Bartram J, Wade R, Vora A, et al. Excellent outcome of minimal residual disease-defined low-risk patients is sustained with more than 10 years follow-up:results of UK paediatric acute lymphoblastic leukaemia trials 1997-2003[J]. Arch Dis Child, 2016, 101(5):449-454.
[2] Athale UH, Gibson PJ, Bradley NM, et al. Minimal residual disease and childhood leukemia:standard of care recommendations from the Pediatric Oncology Group of Ontario MRD Working Group[J]. Pediatr Blood Cancer, 2016, 63(6):973-982.
[3] Campana D. Progress of minimal residual disease studies in childhood acute leukemia[J]. Curr Hematol Malig Rep, 2010, 5(3):169-176.
[4] 徐瑞琴, 陆小云, 张敏. 急性白血病缓解期微小残留病灶与预后的关系[J]. 临床血液学杂志, 2016, 29(3):209-212.
[5] Denys B, van der Sluijs-Gelling AJ, Homburg C, et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia[J]. Leukemia, 2013, 27(3):635-641.
[6] Karawajew L, Dworzak M, Ratei R, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia[J]. Haematologica, 2015, 100(7):935-944.
[7] Cheng SH, Lau KM, Li CK, et al. Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction[J]. PLoS One, 2013, 8(7):e69467.
[8] 卢新天. 儿童急性白血病预后影响因素[J]. 实用儿科临床杂志, 2011, 26(15):1155-1158.
[9] Rocha JM, Xavier SG, de Lima Souza ME, et al. Current strategies for the detection of minimal residual disease in childhood acute lymphoblastic leukemia.[J]. Mediterr J Hematol Infect Dis, 2016, 8(1):e2016024.
[10] Gandemer V, Pochon C, Oger E, et al. Clinical value of pretransplant minimal residual disease in childhood lymphoblastic leukaemia:the results of the French minimal residual diseaseguided protocol[J]. Br J Haematol, 2014, 165(3):392-401.
[11] Campana D. Minimal residual disease[J]. Leukemia Supplements, 2012(1):S3-S4.
[12] Campana D, Coustan-Smith E. Measurements of treatment response in childhood acute leukemia[J]. Korean J Hematol, 2012, 47(4):245-254.
[13] Brüggemann M, Schrauder A, Raff T, et al. Standardized MRD quantification in European ALL trials:Proceedings of the Second International Symposium on MRD Assessment in Kiel, Germany, 18-20 September 2008[J]. Leukemia, 2010, 24(3):521-535.
[14] Anthias C, Dignan FL, Morilla R, et al. Pre-transplant MRD predicts outcome following reduced-intensity and myeloablative allogeneic hemopoietic SCT in AML[J]. Bone Marrow Transplant, 2014, 49(5):679-683.
[15] Martelli MP, Sportoletti P, Tiacci E, et al. Mutational landscape of AML with normal cytogenetics:Biological and clinical implications[J]. Blood Rev, 2013, 27(1):13-22.
[16] Baraka A, Sherief LM, Kamal NM, et al. Detection of minimal residual disease in childhood B-acute lymphoblastic leukemia by 4-color flow cytometry[J]. Int J Hematol, 2017, 105(6):784-791.
[17] 常英军, 赵晓甦. 多参数流式细胞仪检测急性髓细胞白血病微小残留病:挑战与对策[J]. 临床荟萃, 2016, 31(6):581-584.
[18] Getta BM, Devlin SM, Levine RL, et al. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation[J]. Biol Blood Marrow Transplant, 2017, 23(7):1064-1071.
[19] Balduzzi A. Minimal residual disease assessment by nextgeneration sequencing. Better tools to gaze into the crystal ball?[J]. Bone Marrow Transplant, 2017, 52(7):952-954.
[20] 郭青, 金润铭. 微小残留病检测指导白血病治疗的研究进展[J]. 中国实用儿科杂志, 2016, 31(4):264-268.
[21] Coustan-Smith E, Campana D. Immunologic minimal residual disease detection in acute lymphoblastic leukemia:a comparative approach to molecular testing[J]. Best Pract Res Clin Haematol, 2010, 23(3):347-358.
[22] Coustan-Smith E, Sancho J, Hancock ML. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia[J]. Blood, 2002, 100(7):2399-2402.
[23] 徐翀, 何妙侠, 郑建明. 儿童急性淋巴细胞白血病微小残留病检测及其进展[J]. 检验医学, 2013, 28(4):342-347.
[24] Malagola M, Skert C, Borlenghi E, et al. Postremission sequential monitoring of minimal residual disease by WT1 Q-PCR and multiparametric flow cytometry assessment predicts relapse and may help to address risk-adapted therapy in acute myeloid leukemia patients[J]. Cancer Med, 2016, 5(2):265-274.
[25] Wang L, Gao L, Xu S, et al. High prognostic value of minimal residual disease detected by flow-cytometry-enhanced fluorescence in situ hybridization in core-binding factor acute myeloid leukemia (CBF-AML)[J]. Ann Hematol, 2014, 93(10):1685-1694.
[26] Kotrova M, van der Velden VHJ, van Dongen JJM, et al. Nextgeneration sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL[J]. Bone Marrow Transplant, 2017, 52(7):962-968.
[27] Sekiya Y, Xu Y, Muramatsu H, et al. Clinical utility of nextgeneration sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia[J]. Br J Haematol, 2017, 176(2):248-257.
[28] Wu D, Emerson RO, Sherwood A, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH[J]. Clin Cancer Res, 2014, 20(17):4540-4548.
[29] Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL:results of the AIEOP-BFM-ALL 2000 study[J]. Blood, 2011, 118(8):2077-2084.
[30] Teachey DT, Hunger SP. Predicting relapse risk in childhood acute lymphoblastic leukaemia[J]. Br J Haematol, 2013, 162(5):606-620.
[31] Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003):a randomised controlled trial[J]. Lancet Oncol, 2013, 14(3):199-209.
[32] Pui C, Pei D, Coustan-Smith E, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia:a prospective study[J]. Lancet Oncol, 2015, 16(4):465-474.
[33] Eckert C, Hagedorn N, Sramkova L, et al. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia:prognostic relevance of early and late assessment[J]. Leukemia, 2015, 29(8):1648-1655.
[34] Salah-Eldin M, Abousamra NK, Azzam H. Clinical significance of minimal residual disease in young adults with standard-risk/Ph-negative precursor B-acute lymphoblastic leukemia:results of prospective study[J]. Med Oncol, 2014, 31(5):938.
[35] Karol SE, Coustan-Smith E, Cao X, et al. Prognostic factors in children with acute myeloid leukaemia and excellent response to remission induction therapy[J]. Br J Haematol, 2015, 168(1):94-101.
[36] Umeda K, Iwai A, Kawaguchi K, et al. Impact of post-transplant minimal residual disease on the clinical outcome of pediatric acute leukemia[J]. Pediatr Transplant, 2017, 21(4):e12926.
[37] 冯建华, 汤永民, 徐晓军. 流式细胞仪检测儿童急性髓系白血病微小残留病的研究进展[J]. 中华儿科杂志, 2013, 51(3):231-234.
[38] Balduzzi A, Di Maio L, Silvestri D, et al. Minimal residual disease before and after transplantation for childhood acute lymphoblastic leukaemia:is there any room for intervention?[J]. Br J Haematol, 2014, 164(3):396-408.
[39] Leung W, Pui CH, Coustan-Smith E, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with veryhigh-risk leukemia[J]. Blood, 2012, 120:468-472.
[40] Fronkova E, Muzikova K, Mejstrikova E, et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL[J]. Bone Marrow Transplant, 2008, 42(3):187-196.
[41] Bernal T, Diez-Campelo M, Godoy V, et al. Role of minimal residual disease and chimerism after reduced-intensity and myeloablative allo-transplantation in acute myeloid leukemia and high-risk myelodysplastic syndrome[J]. Leuk Res, 2014, 38(5):551-556.

PDF(937 KB)

Accesses

Citation

Detail

Sections
Recommended

/