Abstract Limb-girdle muscular dystrophy (LGMD) is a group of muscular dystrophies with predominantly proximal muscular weakness, and some genes associated with this disease have been identified at present. LGMD type 2Q (LGMD2Q) is a subtype of LGMD and is associated with PLEC gene mutation. Major phenotypes of PLEC gene mutation include epidermolysis bullosa with late-onset muscular dystrophy and epidermolysis bullosa with other lesions. LGMD2Q without skin lesions is rarely reported. This article reviews the pathogenic gene PLEC and clinical manifestations of LGMD2Q, so as to deepen the understanding of the pathogenic gene and phenotype of LGMD2Q.
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies[J]. Muscle Nerve, 2018, 58(2):167-177.
[2]
Iyadurai SJ, Kissel JT. The limb-girdle muscular dystrophies and the dystrophinopathies[J]. Continuum (Minneap Minn), 2016, 22(6):1954-1977.
[3]
Khadilkar SV, Patel BA, Lalkaka JA. Making sense of the clinical spectrum of limb girdle muscular dystrophies[J]. Pract Neurol, 2018,18(3):201-210.
[4]
Witherick J, Brady S. Update on muscle disease[J]. J Neurol, 2018, 265(7):1717-1725.
[5]
Straub V, Murphy A, Udd B, et al. 229th ENMC international workshop:Limb girdle muscular dystrophies-Nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017[J]. Neuromuscul Disord, 2018, 28(8):702-710.
[6]
Zhong J, Chen G, Dang Y, et al. Novel compound heterozygous PLEC mutations lead to early-onset limb-girdle muscular dystrophy 2Q[J]. Mol Med Rep, 2017, 15(5):2760-2764.
[7]
Ortega E, Manso JA, Buey RM, et al. The structure of the plakin domain of plectin reveals an extended rod-like shape[J]. J Biol Chem, 2016, 291(36):18643-18662.
[8]
Castañón MJ, Walko G, Winter L, et al. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve[J]. Histochem Cell Biol, 2013, 140(1):33-53.
[9]
Iwamoto DV, Huehn A, Simon B, et al. Structural basis of the filamin A actin-binding domain interaction with F-actin[J]. Nat Struct Mol Biol, 2018, 25(10):918-927.
[10]
Murphy S, Dowling P, Zweyer M, et al. Proteomic profiling of giant skeletal muscle proteins[J]. Expert Rev Proteomics, 2019, 16(3):241-256.
[11]
Ni Y, Wang X, Yin X, et al. Plectin protects podocytes from adriamycin-induced apoptosis and F-actin cytoskeletal disruption through the integrin α6β4/FAK/p38 MAPK pathway[J]. J Cell Mol Med, 2018, 22(11):5450-5467.
[12]
Daday C, Kolšek K, Gräter F. The mechano-sensing role of the unique SH3 insertion in plakin domains revealed by molecular dynamics simulations[J]. Sci Rep, 2017, 7(1):11669.
[13]
Natsuga K, Nishie W, Shinkuma S, et al. Plectin deficiency leads to both muscular dystrophy and pyloric atresia in epidermolysis bullosa simplex[J]. Hum Mutat, 2010, 31(10):E1687-E1698.
[14]
Osmanagic-Myers S, Rus S, Wolfram M, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks[J]. J Cell Sci, 2015, 128(22):4138-4150.
[15]
Wiche G, Osmanagic-Myers S, Castañón MJ. Networking and anchoring through plectin:a key to IF functionality and mechanotransduction[J]. Curr Opin Cell Biol, 2015, 32:21-29.
[16]
De Pascalis C, Pérez-González C, Seetharaman S, et al. Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts[J]. J Cell Biol, 2018, 217(9):3031-3044.
Rezniczek GA, Winter L, Walko G, et al. Functional and genetic analysis of plectin in skin and muscle[J]. Methods Enzymol, 2016, 569:235-259.
[19]
Nahidiazar L, Kreft M, van den Broek B, et al. The molecular architecture of hemidesmosomes, as revealed with super-resolution microscopy[J]. J Cell Sci, 2015, 128(20):3714-3719.
[20]
Chaudhari PR, Vaidya MM. Versatile hemidesmosomal linker proteins:structure and function[J]. Histol Histopathol, 2015, 30(4):425-434.
[21]
Roman W, Gomes ER. Nuclear positioning in skeletal muscle[J]. Semin Cell Dev Biol, 2018, 82:51-56.
[22]
Gostyńska KB, Nijenhuis M, Lemmink H, et al. Mutation in exon 1a of PLEC, leading to disruption of plectin isoform 1a, causes autosomal-recessive skin-only epidermolysis bullosa simplex[J]. Hum Mol Genet, 2015, 24(11):3155-3162.
[23]
Fuchs P, Zörer M, Reipert S, et al. Targeted inactivation of a developmentally regulated neural plectin isoform (plectin 1c) in mice leads to reduced motor nerve conduction velocity[J]. J Biol Chem, 2009, 284(39):26502-26509.
[24]
Abrahamsberg C, Fuchs P, Osmanagic-Myers S, et al. Targeted ablation of plectin isoform 1 uncovers role of cytolinker proteins in leukocyte recruitment[J]. Proc Natl Acad Sci U S A, 2005, 102(51):18449-18454.
[25]
Winter L, Kuznetsov AV, Grimm M, et al. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle[J]. Hum Mol Genet, 2015, 24(16):4530-4544.
[26]
Mado K, Chekulayev V, Shevchuk I, et al. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells[J]. Am J Physiol Cell Physiol, 2019, 316(5):C657-C667.
[27]
Gache Y, Chavanas S, Lacour JP, et al. Defective expression of plectin/HD1 in epidermolysis bullosa simplex with muscular dystrophy[J]. J Clin Invest, 1996, 97(10):2289-2298.
Mihailovska E, Raith M, Valencia RG, et al. Neuromuscular synapse integrity requires linkage of acetylcholine receptors to postsynaptic intermediate filament networks via rapsyn-plectin 1f complexes[J]. Mol Biol Cell, 2014, 25(25):4130-4149.
[30]
Bourhis T, Buche S, Fraitag S, et al. Laryngeal lesion associated with epidermolysis bullosa secondary to congenital plectin deficiency[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2019, 136(3):203-205.
[31]
Kayki G, Bozkaya D, Ozaltin F, et al. Epidermolysis bullosa with pyloric atresia and aplasia cutis in a newborn due to homozygous mutation in ITGB4[J]. Fetal Pediatr Pathol, 2017, 36(4):332-339.
[32]
Has C. Advances in understanding the molecular basis of skin fragility[J]. F1000Res, 2018, 7:279.
[33]
Argyropoulou Z, Liu L, Ozoemena L, et al. A novel PLEC nonsense homozygous mutation (c.7159G > T; p.Glu2387*) causes epidermolysis bullosa simplex with muscular dystrophy and diffuse alopecia:a case report[J]. BMC Dermatol, 2018, 18(1):1.
[34]
Konieczny P, Fuchs P, Reipert S, et al. Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms[J]. J Cell Biol, 2008,181(4):667-681.
[35]
Al-Thawabieh W, Lucky AW, Wong B, et al. Pediatric ophthalmoplegia and ptosis in epidermolysis bullosa simplex associated with muscular dystrophy[J]. J Pediatr Ophthalmol Strabismus, 2018, 55:e26-e29.
[36]
Kyrova J, Kopeckova L, Buckova H, et al. Epidermolysis bullosa simplex with muscular dystrophy. Review of the literature and a case report[J]. J Dermatol Case Rep, 2016, 10(3):39-48.
[37]
Winter L, Türk M, Harter PN, et al. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy[J]. Acta Neuropathol Commun, 2016, 4(1):44.
[38]
Gundesli H, Talim B, Korkusuz P, et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy[J]. Am J Human Genet, 2010, 87(6):834-841.
[39]
Fattahi Z, Kahrizi K, Nafissi S, et al. Report of a patient with limb-girdle muscular dystrophy, ptosis and ophthalmoparesis caused by plectinopathy[J]. Arch Iran Med, 2015, 18(1):60-64.
[40]
Rodríguez Cruz PM, Sewry C, Beeson D, et al. Congenital myopathies with secondary neuromuscular transmission defects; a case report and review of the literature[J]. Neuromuscul Disord, 2014, 24(12):1103-1110.
[41]
Deev RV, Bardakov SN, Mavlikeev MO, et al. Glu20Ter variant in PLEC 1f isoform causes limb-girdle muscle dystrophy with lung injury[J]. Front Neurol, 2017, 8:367.