Abstract OBJECTIVE: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) which resulted from mutation in SLC25A13 gene can present transient intrahepatic cholestasis, low birth weight, growth retardation, hypoproteinemia and so on. This study aimed to identify the mutation type of NICCD patients by DNA sequencing. METHODS: Twenty children diagnosed as NICCD were consented to enroll in this study. PCR assays were performed to amplify the eighteen exons and its flanking sequences of SLC25A13 gene, which were defined as the upstream and downstream 50 bp from starting and ending site of the exons. Then the PCR products were purified and followed by automated DNA sequencing. The IVS16ins3kb mutation was detected by nested PCR and RT-PCR. RESULTS: Seven genetic variations of SLC25A13, termed as 851del4, 1638ins23, IVS16ins3kb, IVS6+5G>A, c.775C>T (p.Q259X), c.1505C>T (p.P502L) and c.1311C>T (p.C437C), were identified in the subjects, of which c.775C>T (p.Q259X), c.1505C>T (p.P502L) and c.1311C>T (p.C437C) were reported for the first time in NICCD patients. And a compound mutation of [1638ins23+IVS16ins3kb] was also identified. In 20 patients with NICCD, 6 patients were 851del4 homozygotes, 7 patients were compound heterozygotes, and 7 patients were heterozygotes of single mutation. 851del4 was the major mutation type (64%), followed by 1638ins23 (15%), IVS16ins3kb (12%) and IVS6+5G>A (6%). CONCLUSIONS: 851del4 is the major mutation type in Chinese patients with NICCD.
[1]Lu YB, Kobayashi K, Ushikai M, Tabata A, Iijima M, Li MX, et al. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency[J]. J Hum Genet, 2005, 50(7): 338-346.
[3]Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia[J]. Hum Genet, 2000, 107(6): 537-545.
[4]Ohura T, Kobayashi K, Tazawa Y, Abukawa D, Sakamoto O, Tsuchiya S, et al. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD)[J]. J Inherit Metab Dis, 2007, 30(2): 139-144.
[5]Tabata A, Sheng JS, Ushikai M, Song YZ, Gao HZ, Lu YB, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency[J]. J Hum Genet, 2008, 53(6): 534-545.
[6]Sinasac DS, Crackower MA, Lee JR, Kobayashi K, Saheki T, Scherer SW, et al. Genomic structure of the adult-onset type II citrullinemia gene, SLC25A13, and cloning and expression of its mouse homologue[J]. Genomics, 1999, 62(2): 289-292.
[7]Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein[J]. Nat Genet, 1999, 22(2): 159-163.
[8]Ohura T, Kobayashi K, Tazawa Y, Nishi I, Abukawa D, Sakamoto O, et al. Neonatal presentation of adult-onset type II citrullinemia[J]. Hum Genet, 2001, 108(2): 87-90.
[9]Tazawa Y, Kobayashi K, Ohura T, Abukawa D, Nishinomiya F, Hosoda Y, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia[J]. J Pediatr, 2001, 138(5): 735-740.
[10]Tomomasa T, Kobayashi K, Kaneko H, Shimura H, Fukusato T, Tabata M, et al. Possible clinical and histologic manifestations of adult-onset type II citrullinemia in early infancy[J]. J Pediatr, 2001, 138(5): 741-743.
[11]Dimmock D, Maranda B, Dionisi-Vici C, Wang J, Kleppe S, Fiermonte G, et al. Citrin deficiency, a perplexing global disorder[J]. Mol Genet Metab, 2009, 96(1): 44-49.
[12]Kobayashi K, Ushikai M, Song YZ. Overview of citrin deficiency: SLC25A13 mutations and the frequency[J]. 实用儿科临床杂志, 2008, 23(20): 1553-1557.
[15]Song YZ, Li BX, Chen FP, Liu SR, Sheng JS, Ushikai M, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency: clinical and laboratory investigation of 13 subjects in mainland of China[J]. Dig Liver Dis, 2009, 41(9): 683-689.
[16]Ben-Shalom E, Kobayashi K, Shaag A, Yasuda T, Gao HZ, Saheki T, et al. Infantile citrullinemia caused by citrin deficiency with increased dibasic amino acids[J]. Mol Genet Metab, 2002, 77(3): 202-208.
[17]Wong LJ, Dimmock D, Geraghty MT, Quan R, Lichter-Konecki U, Wang J, et al. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions[J]. Clin Chem, 2008, 54(7): 1141-1148.