Changes of biological clock protein in neonatal rats with hypoxic-ischemic brain damage

LI Yong-Fu, JIN Mei-Fang, SUN Bin, FENG Xing

Chinese Journal of Contemporary Pediatrics ›› 2013, Vol. 15 ›› Issue (1) : 62-66.

PDF(1094 KB)
PDF(1094 KB)
Chinese Journal of Contemporary Pediatrics ›› 2013, Vol. 15 ›› Issue (1) : 62-66. DOI: 10.7499/j.issn.1008-8830.2013.01.016
EXPERIMENTAL RESEARCH

Changes of biological clock protein in neonatal rats with hypoxic-ischemic brain damage

  • LI Yong-Fu, JIN Mei-Fang, SUN Bin, FENG Xing
Author information +
History +

Abstract

OBJECTIVE: To study the effects of biological clock protein on circadian disorders in hypoxic-ischemic brain damage (HIBD) by examining levels of CLOCK and BMAL1 proteins in the pineal gland of neonatal rats. METHODS: Seventy-two 7-day-old Sprague-Dawley (SD) rats were randomly divided into sham-operated and HIBD groups. HIBD model was prepared according to the modified Levine method. Western blot analysis was used to measure the levels of CLOCK and BMAL1 in the pineal gland at 0, 2, 12, 24, 36 and 48 hours after operation. RESULTS: Both CLOCK and BMAL levels in the pineal gland increased significantly 48 hours after HIBD compared with the sham-operated group (P<0.05). There were no significant differences in levels of CLOCK and BMAL proteins between the two groups at 0, 2, 12, 24 and 36 hours after operation (P>0.05). CONCLUSIONS: Levels of CLOCK and BMAL1 proteins in the pineal gland of rats increase significantly 48 hours after HIBD, suggesting that both CLOCK and BMAL1 may be involved the regulatory mechanism of circadian disorders in rats with HIBD.

Key words

Hypoxic-ischemic brain damage / Pineal gland / Clock gene / BMAL1 / Neonatal rats

Cite this article

Download Citations
LI Yong-Fu, JIN Mei-Fang, SUN Bin, FENG Xing. Changes of biological clock protein in neonatal rats with hypoxic-ischemic brain damage[J]. Chinese Journal of Contemporary Pediatrics. 2013, 15(1): 62-66 https://doi.org/10.7499/j.issn.1008-8830.2013.01.016

References

[1]Kondratova AA, Kondratov RV. The circadian clock and pathology of the ageing brain[J]. Nat Rev Neurosci, 2012, 13(5): 325-335.

[2]Khapre RV, Kondratova AA, Susova O, Kondratov RV. Circadian clock protein BMAL1 regulates cellular senescence in vivo[J].Cell Cycle, 2011, 10(23): 4162-4169.

[3]Ghorbel MT, Coulson JM, Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene[J]. Mol Cell Neurosci, 2003, 22(3): 396-404.

[4]Phillips CI, Smith VM, Antle MC, Dyck RH. Neonatal medial frontal cortex lesions disrupt circadian activity patterns[J]. Dev Neurosci, 2009, 31(5): 412-419.

[5]陈惠金, 周泽汉, 周建德, 周伟, 吴圣楣. 新生大鼠缺氧实验装置的研制[J]. 上海实验动物科学, 1999, 19(1): 45-46.

[6]Ikeda T, Mishima K, Yoshikawa T, Iwasaki K, Fujiwara M, Xia YX, et al. Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats[J]. Behav Brain Res, 2002, 136(1): 161-170.

[7]Kuszak J, Rodin M. A new technique of pinealectomy for adult rats[J]. Experientia, 1977, 33(2): 283-284.

[8]Kalsbeek A, Buijus RM. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting[J].Cell Tissue Res, 2002, 309(1): 109-118.

[9]Ebben MR, Narizhnaya M. Cognitive and behavioral treatment options for insomnia[J]. Mt Sinai J Med, 2012, 79(4): 512-523.

[10]Krysta K, Krzystanek M, Janas-Kozik M, Krupka-Matuszczyk I. Bright light therapy in the treatment of childhood and adolescence depression, antepartum depression, and eating disorders[J]. Neural Transm, 2012, 19. [Epub ahead of print].

[11]van Oosterhout F, Lucassen EA, Houben T, Vanderleest HT, Antle MC, Meijer JH. Amplitude of the SCN Clock Enhanced by the Behavioral Activity Rhythm[J]. PLoS One, 2012, 7(6): e39693.

[12]Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues[J]. BMC Mol Biol, 2004, 9(5): 18-27.

[13]Mazzoccoli G, Francavilla M, Giuliani F, Aucella F, Vinciguerra M, Pazienza V, et al. Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns[J]. J Biol Regul Homeost Agents, 2012, 26(2): 303-311.

[14]Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, et al. Crystal structure of the heterodimeric CLOCK: BMAL1 transcriptional activator complex[J]. Science, 2012, 337(6091): 189-194.

[15]Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, et al. Glucocorticoids play a key role in circadian cell cycle rhythms[J]. PLoS Biol, 2007, 5(4): e78.

[16]冯国祝, 冯星, 杨林, 齐文辉, 张文祥, 童小艳, 等. 窒息新生儿血浆神经肽 Y 测定及临床意义[J]. 中国当代儿科杂志, 2003, 5(4): 314-316.

[17]Hyun Jung Kim, Mary E. Harrington. Neuropeptide Y-deficient mice show altered circadian response to simulated natural photoperiod[J]. Brain Research, 2008, 46 (12): 96-100.

[18]Finkel T. Oxidant signals and oxidative stress[J]. Curr Opin Cell Biol, 2003, 15(2): 247-254.

[19]Masri S, Zocchi L, Katada S, Mora E, Sassone-Corsi P. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control[J]. Ann N Y Acad Sci, 2012, 26. [Epub ahead of print].

[20]丁欣, 冯星. 新生大鼠脑损伤后松果体Clock mRNA、Per2 mRNA表达和血浆褪黑素水平变化[J]. 临床儿科杂志, 2007, 25(7): 590-593.

[21]Razorenova OV. Brain and muscle ARNT-like protein BMAL1 regulates ROS homeostasis and senescence: a possible link to hypoxia-inducible factor-mediated pathway[J]. Cell Cycle, 2012, 11(2): 213-214.

[22]Valenzuela FJ, Torres-Farfan C, Richter HG, Mendez N, Campino C, Torrealba F, et al. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: Is the adrenal a peripheral Clock responsive to melatonin?[J]. Endocrinology, 2008, 149(4): 1454-1461.

[23]Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions[J]. Nat  Genet, 2006, 38: 369-374.

PDF(1094 KB)

Accesses

Citation

Detail

Sections
Recommended

/