Abstract The mammalian mitochondrial ATP synthase, also as known as mitochondrial respiratory chain complex V, is a large protein complex located in the mitochondrial inner membrane, where it catalyzes ATP synthesis from ADP, Pi, and Mg2+ at the expense of an electrochemical gradient of protons generated by the electron transport chain. Complex V is composed of 2 functional domains F0 and F1. The clinical features of patients are significantly heterogeneous depending on the involved organs. Most patients with complex V deficiency had clinical onset in the neonatal period with severe brain damage or multi-organ failure resulting in a high mortality. Neuromuscular disorders, cardiomyopathy, lactic acidosis and 3-methylglutaconic aciduria are common findings. Complex V consists of 16 subunits encoded by both mitochondrial DNA and nuclear DNA. On MT-ATP6, MT-ATP8, ATPAF2, TMEM70 and ATP5E gene of mitochondrial DNA, many mutations associated with Complex V deficiency have been identified. Here, the pathology, clinical features, diagnosis, treatment and molecular genetics of Complex V deficiency were summarized.
[2]Johnson JA, Ogbi M. Targeting the F1Fo ATP synthase: modulation of the body′s powerhouse and its implications for human disease[J]. Curr Med Chem, 2011, 18 (30): 4684-4714.
[3]Gong L, Ramm G, Devenish RJ, Prescott M. HcRed, a genetically encoded fluorescent binary cross-linking agent for cross-linking of mitochondrial ATP synthase in Saccharomyces cerevisiae[J]. PLoS One, 2012, 7 (4): e35095.
[4]Giraud MF, Paumard P, Sanchez C, Brèthes D, Velours J, Dautant A. Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase [J]. J Struct Biol, 2012, 177 (2): 490-497.
[5]Wittig I, Schagger H. Structural organization of mitochondrial ATP synthase[J]. Biochim Biophys Acta, 2008, 1777(7-8): 592-598.
[6]Karrasch S, Walker JE. Novel features in the structure of bovine ATP synthase[J]. J Mol Biol, 1999, 290 (2): 379-384.
[7]Walker JE, Lutter R, Dupuis A, Runswick MJ. Identification of the subunits of F1F0ATPase from bovine heart mitochondria[J]. 1991, 30: 5369-5378.
[8]Gibbons C, Montgomery MG, Leslie AG, Walker JE. The structure of the central stalk in bovine F1-ATPase at 2.4 A resolution [J]. 2000, 7(11): 1055-1061.
[9]Rubinstein JL, Walker JE, Henderson R. Structure of the mitochondrial ATP synthase by electron cryomicroscopy[J]. EMBO J, 2003, 22 (23): 6182-6192.
[10]Cabezón E, Montgomery MG, Leslie AG, Walker JE. The structure of bovine F1ATPase in complex with its regulatory protein IF1 [J]. Nat Struct Biol, 2003, 10 (9): 744-750.
[11]Bason JV, Runswick MJ, Fearney IM, Walker JE. Binding of the inhibitor protein IF(1) to bovine F1(1)-ATPase[J]. J Mol Biol, 2011, 406(3): 443-453.
[12]von Ballmoos C, Wiedenmann A. Essentials for ATP synthesis by F1Fo ATP synthases [J]. Annu Rev Biochem, 2009, 78: 649-672.
[13]Collinson IR, Runswick MJ, Buchanan SK, Fearnley IM, Skehel JM, van Raaij MJ, et al. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification,subunit composition, and reconstitution with F1-ATPase[J]. Biochemistry, 1994, 33 (25): 7971-7978.
[14]Capaldi RA, Aggeler R. Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor[J]. Trends Biochem Sci, 2002, 27 (3): 154-160.
[15]Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA. Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase[J]. Proc Natl Acad Sci U S A, 2001, 98 (3): 898-902.
[16]Zheng J, Ramirez VD. Purification and identification of an estrogen binding protein from rat brain: oligomycin sensitivity-conferring protein (OSCP), a subunit of mitochondrial F0F1ATP synthase/ATPase[J]. J Steroid Biochem Mol Biol, 1999, 68 (1-2): 65-75.
[17]Tu Q, Yu L, Zhang P, Zhang M, Zhang H, Jiang J, et al. Cloning, characterization and mapping of the human ATP5E gene, identification of pseudogene ATP5EP1, and definition of the ATP5E motif[J]. Biochem J, 2000, 347(Pt 1): 17-21.
[18]Nguyen T, Ogbi M, Johnson JA. Delta protein kinase C interacts with the d subunit of the F1F0 ATPase in neonatal cardiac myocytes exposed to hypoxia or phorbol ester. Implications for F1F0 ATPase regulation[J]. J Biol Chem, 2008, 283 (44): 29831-29840.
[19]Nguyen TT, Ogbi M, Yu Q, Johnson JA. Attenuation of the hypoxia-induced protein kinase Cdelta interaction with the 'd' subunit of F1Fo-ATP synthase in neonatal cardiac myocytes: implications for energy preservation and survival[J]. Biochem J, 2010, 429 (2): 335-345.
[20]Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase[J]. Biochim Biophys Acta, 2006, 1757 (5-6): 286-296.
[21]Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, et al. Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex[J]. J Biol Chem, 2009, 284 (49): 33982-33988.
[22]Meyer B, Wittig I, Trifilieff E, Karas M, Schagger H. Identification of two proteins associated with mammalian ATP synthase[J]. Mol Cell Proteomics, 2007, 6 (10): 1690-1699.
[23]Belogrudov GI. Recent advances in structure-functional studies of mitochondrial factor B[J]. J Bioenerg Biomembr, 2009, 41 (2): 137-143.
[24]Carbajo RJ, Kellas FA, Runswick MJ, Montgomery M, Walker JE, Neuhaus D. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alphasubunit[J]. J Mol Biol, 2005, 351 (4): 824-838.
[25]Rees DM, Leslie AG, Walker JE. The structure of the membrane extrinsic region of bovine ATP synthase[J]. Proc Natl Acad Sci U S A, 2009, 106 (51): 21597-21601.
[26]Campanella M, Casswell E, Chong S, Farah Z, Wieckowski MR, Abramov AY,et al. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1[J]. Cell Metab, 2008, 8(1):13-25.
[27]Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast[J]. FEBS Lett,2011,585(9):1255-1259.
[28]Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Torocsik B, Doczi J, et al. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation[J]. FASEB J, 2010, 24 (7): 2405-2416.
[29]Mracek T, Pecina P, Vojtiskova A, Kalous M, Sebesta O, Houstek J. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: energy deprivation and ROS production[J]. Exp Gerontol, 2006, 41 (7): 683-687.
[30]Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA. Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex[J]. Exp Gerontol, 2010, 45(7-8): 563-572.
[35]Arthur CR, Morton SL, Dunham LD, Keeney PM, Bennett JP Jr. Parkinson′s disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance[J]. Mol Neurodegener, 2009, 4: 37.
[36]Baracca A, Sgarbi G, Mattiazzi M, Casalena G, Pagnotta E, Valentino ML, et al. Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993[J]. Biochim Biophys Acta, 2007, 1767 (7): 913-919.
[37]Sperl W, Jesina P, Zeman J, Mayr JA, Demeirleir L, VanCoster R, et al. Deficiency of mitochondrial ATP synthase of nuclear genetic origin[J]. Neuromuscul Disord, 2006, 16 (12): 821-829.
[39]Sgarbi G, Baracca A, Lenaz G, Valentino LM, Carelli V, Solaini G. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA[J]. Biochem J, 2006, 395(3):493-500.
[40]Hung PC, Wang HS. A previously undescribed leukodystrophy in Leigh syndrome associated with T9176C mutation of the mitochondrial ATPase 6 gene[J]. Dev Med Child Neurol, 2007, 49 (1): 65-67.
[41]Ware SM, ElHassan N, Kahler SG, Zhang Q, Ma YW, Miler E, et al. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes [J]. J Med Genet, 2009, 46 (5): 308-314.
[42]Janssen AJ, Smeitink JA, van den Heuvel LP. Some practical aspects of providing a diagnostic service for respiratory chain defects [J]. Ann Clin Biochem, 2003, 40 (Pt 1): 3-8.
[45]Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JT, Wherret J, Smith C, et al. Heteroplasmic mtDNA mutation (T-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high[J]. Am J Hum Genet, 1992, 50 (4): 852-858.
[46]Celotto AM, Chiu WK, Van Voorhies W, Palladino MJ. Modes of metabolic compensation during mitochondrial disease using the Drosophila model of ATP6 dysfunction[J]. PLoS One, 2011, 6 (10): e25823.
[47]Galimberti CA, Diegoli M, Sartori I, Uggetti C, Brega A, Tartara A, et al. Brain pseudoatrophy and mental regression on valproate and a mitochondrial DNA mutation[J]. Neurology, 2006, 67 (9): 1715-1717.
[48]Jonckheere AI, Hogeveen M, Nijtmans LG, van den Brand M, Janssen A, Diepstra H, et al. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy[J]. J Med Genet, 2008, 45 (3): 129-133.
[49]Yu X, Wester-Rosenlof L, Gimsa U, Holzhueter SA, Marques A, Jonas L, et al. The mtDNA nt7778 G/T polymorphism affects autoimmune diseases and reproductive performance in the mouse[J]. Hum Mol Genet, 2009, 18(24):4689-4698.
[50]De Meirleir L, Seneca S, Lissens W, De Clercq I, Eyskens F, et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12[J]. J Med Genet, 2004, 41 (2): 120-124.
[51]Torraco A, Verrigni D, Rizza T, Meschini MC, Vazquez-Memije, Martinelli D, et al. TMEM70: a mutational hot spot in nuclear ATP synthase deficiency with a pivotal role in complex V biogenesis[J]. Neurogenetics, 2012, 13(4):375-386.
[52]Houstek J, Kmoch S, Zeman J. TMEM70 protein-a novel ancillary factor of mammalian ATP synthase[J]. Biochim Biophys Acta, 2009, 1787 (5): 529-532.
[53]Cizkova A, Stranecky V, Mayr JA, Tesarova M, Havlickova V, Paul J, et al. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy[J]. Nat Genet, 2008, 40 (11): 1288-1290.
[54]Spiegel R, Khayat M, Shalev S A, Horovitz Y, Mandel H, Hershkovitz E, et al. TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: further delineation of a new syndrome [J]. J Med Genet, 2011, 48 (3): 177-182.
[55]Cameron JM, Levandovskiy V, Mackay N, Ackerley C, Chitayat D, Raiman J, et al. Complex V TMEM70 deficiency results in mitochondrial nucleoid disorganization[J]. Mitochondrion, 2011, 11 (1): 191-199.
[56]Mayr JA, Havlickova V, Zimmermann F, Magler I, Kaplanova V, Jesina P, et al. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit [J]. Hum Mol Genet, 2010, 19 (17): 3430-3439.
[57]Mattiazzi M, Vijayvergiya C, Gajewski CD, DeVivo DC, Lenaz, G, Wiedmann M, et al. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants[J]. Hum Mol Genet, 2004, 13 (8): 869-879.
[58]Sgarbi G, Casalena GA, Baracca A, Lenaz G, DiMauro S, Solanini G. Human NARP mitochondrial mutation metabolism corrected with alpha-ketoglutarate/aspartate: a potential new therapy[J]. Arch Neurol, 2009, 66 (8): 951-957.
[59]Bonnet C, Kaltimbacher V, Ellouze S, Augustin S, Benit P, Forster V, et al. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or V subunits [J]. Rejuvenation Res, 2007, 10 (2): 127-144.
[60]Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy J L, Cree LM, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease [J]. Nature, 2010, 465 (7294): 82-85.