
Advanced molecular technologies for the diagnosis of congenital malformation in neonates
YANG Lin, WANG Hui-Jun, HUANG Guo-Ying, ZHOU Wen-Hao
Chinese Journal of Contemporary Pediatrics ›› 2013, Vol. 15 ›› Issue (11) : 960-964.
Advanced molecular technologies for the diagnosis of congenital malformation in neonates
Genetic disorder / Copy number variant / Sequencing analysis / Neonate
[1] Rudan I, Chan KY, Zhang JS, Theodoratou E, Feng XL, Salomon JA, et al. Causes of deaths in children younger than 5 years in China in 2008[J]. Lancet, 2010, 375(9720): 1083-1089.
[2] 朱雪娜, 闫淑娟, 李东阳. 2001-2010年北京市5岁以下儿童先天异常死亡状况分析[J]. 中国儿童保健杂志, 2011, 19(6): 554-557.
[3] 邱美英,翟晓蔚. 上海市嘉定区2001~2005年5岁以下儿童死亡原因分析[J]. 中国妇幼保健, 2008, 23(4): 458-459.
[4] Dolk H, Loane M, Garne E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005[J]. Circulation, 2011, 123(8): 841-849.
[5] Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies[J]. Arch Dis Child Fetal Neonatal Ed, 2005, 90(5): F355-F358.
[6] Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units[J]. Sci Transl Med, 2012, 4(154): 135r-154r.
[7] Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome[J]. Science, 2004, 305(5683): 525-528.
[8] Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome[J]. Nat Genet, 2004, 36(9): 949-951.
[9] Rothberg JM, Leamon JH. The development and impact of 454 sequencing[J]. Nat Biotechnol, 2008, 26(10): 1117-1124.
[10] Shendure J, Ji H. Next-generation DNA sequencing[J]. Nat Biotechnol, 2008, 26(10): 1135-1145.
[11] Hjortshoj TD, Gronskov K, Philp AR, Nishimura DY, Riise R, Sheffield VC, et al. Bardet-Biedl syndrome in Denmark-report of 13 novel sequence variations in six genes[J]. Hum Mutat, 2010, 31(4): 429-436.
[12] Eichers ER, Lewis RA, Katsanis N, Lupski JR. Triallelic inheritance: a bridge between Mendelian and multifactorial traits[J]. Ann Med, 2004, 36(4): 262-272.
[13] Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome[J]. Am J Hum Genet, 2003, 72(5): 1187-1199.
[14] Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome[J]. Science, 2004, 305(5683): 525-528.
[15] Diaz D ST, Sandgren J, Piotrowski A, Nord H, Andersson R, Menzel U, et al. Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array[J]. Hum Mutat, 2008, 29(3): 398-408.
[16] Mccarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation[J]. Nat Genet, 2008, 40(10): 1166-1174.
[17] Sagoo GS, Butterworth AS, Sanderson S, Shaw-Smith C, Higgins J P, Burton H. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects[J]. Genet Med, 2009, 11(3): 139-146.
[18] Park SJ, Jung EH, Ryu RS, Kang HW, Ko JM, Kim HJ, et al. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases[J]. Mol Cytogenet, 2011, 4: 12.
[19] Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies[J]. Am J Hum Genet, 2010, 86(5): 749-764.
[20] Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Ogilvie CM. Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals - results from four years' clinical application for over 8,700 patients[J]. Mol Cytogenet, 2013, 6(1): 16.
[21] Zhang X, Snijders A, Segraves R, Zhang X, Niebuhr A, Albertson D, et al. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization[J]. Am J Hum Genet, 2005, 76(2): 312-326.
[22] Strehle EM, Yu L, Rosenfeld JA, Donkervoort S, Zhou Y, Chen TJ, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region[J]. Am J Med Genet A, 2012, 158A(9): 2139-2151.
[23] Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing[J]. Nat Methods, 2010, 7(2): 111-118.
[24] American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: toward a uniform screening panel and system-executive summary[J]. Pediatrics, 2006, 117(5 Pt 2): S296-S307.
[25] Downing GJ, Zuckerman AE, Coon C, Lloyd-Puryear M A. Enhancing the quality and efficiency of newborn screening programs through the use of health information technology[J]. Semin Perinatol, 2010, 34(2): 156-162.
[26] Singh RH, Rohr F, Splett PL. Bridging evidence and consensus methodology for inherited metabolic disorders: creating nutrition guidelines[J]. J Eval Clin Pract, 2013, 19(4): 584-590.
[27] Morton CC, Nance WE. Newborn hearing screening-a silent revolution[J]. N Engl J Med, 2006, 354(20): 2151-2164.
[28] De Keulenaer S, Hellemans J, Lefever S, Renard JP, De Schrijver J, Van de Voorde H, et al. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform[J]. BMC Med Genomics, 2012, 5: 17.
[29] Sbidian E, Feldmann D, Bengoa J, Fraitag S, Abadie V, de Prost Y, et al. Germline mosaicism in keratitis-ichthyosis-deafness syndrome: prenatal diagnosis in a familial lethal form[J]. Clin Genet, 2010, 77(6): 587-592.
[30] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63.
[31] Schuster SC. Next-generation sequencing transforms today's biology[J]. Nat Methods, 2008, 5(1): 16-18.
[32] Mardis ER. The impact of next-generation sequencing technology on genetics[J]. Trends Genet, 2008, 24(3): 133-141.
[33] Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower[J]. PLoS Biol, 2009, 7(4): e1000090.
[34] van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis[J]. J Am Coll Cardiol, 2011, 58(21): 2241-2247.
[35] Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects[J]. Clin Genet, 2009, 75(5): 409-423.
[36] Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology[J]. Nat Rev Genet, 2004, 5(10): 725-738.
[37] Pont SJ, Robbins JM, Bird TM, Gibson JB, Cleves MA, Tilford JM, et al. Congenital malformations among liveborn infants with trisomies 18 and 13[J]. Am J Med Genet A, 2006, 140(16): 1749-1756.
[38] Goldmuntz E. DiGeorge syndrome: new insights[J]. Clin Perinatol, 2005, 32(4):963-978.
[39] Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease[J]. Nature, 2013, 498(7453): 220-223.
[40] Lo YM, Wittwer CT. Molecular diagnostics: at the cutting edge of translational research[J]. Clin Chem, 2009, 55(4): 601.