Prevention and treatment of energy failure in neonates with hypoxic-ischemic encephalopathy
ZOU Rong, MU De-Zhi
Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu 610041, China
Abstract Hypoxic-ischemic encephalopathy (HIE) in neonates is the brain injury caused by perinatal asphyxia or hypoxia and is a major cause of death in neonates and nervous system dysfunction in infants and young children. Although to a certain degree, mild hypothermia therapy reduces the mortality of infants with moderate to severe HIE, it cannot achieve the expected improvements in nervous system dysfunction. Hence, it is of vital importance to search for effective therapeutic methods for HIE. The search for more therapies and better preventive measures based on the pathogenesis of HIE has resulted in much research. As an important link in the course of HIE, energy failure greatly affects the development and progression of HIE. This article reviews the research advances in the treatment and prevention of energy failure in the course of HIE.
Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy[J]. J Biomed Biotechnol, 2011, 2011:609813.
[2]
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy[J]. Early Hum Dev, 2010, 86(6):329-338.
[3]
Yates HL, McCullough S, Harrison C, et al. Hypoxic ischaemic encephalopathy:accuracy of the reported incidence[J]. Arch Dis Child Fetal Neonatal Ed, 2012, 97(1):F77-F78.
[4]
James A, Patel V. Hypoxic ischaemic encephalopathy[J]. Paediatr Child Health, 2014, 24(9):385-389.
[5]
Saliba E, Fakhri N, Debillon T. Establishing a hypothermia service for infants with suspected hypoxic-ischemic encephalopathy[J]. Semin Fetal Neonatal Med, 2015, 20(2):80-86.
[6]
Wu Q, Chen W, Sinha B, et al. Neuroprotective agents for neonatal hypoxic-ischemic brain injury[J]. Drug Discov Today, 2015, 20(11):1372-1381.
[7]
Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid[J]. Clin Chim Acta, 2015, 450:282-297.
[8]
Mckenna MC, Dienel GA, Sonnewald U, et al. Energy metabolism of the brain[M]//Siegel GJ, Albers RW, Price DL. Basic neurochemistry. 8 th ed. New York:Academic Press, 2012:200-231.
[9]
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism:focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6):724-738.
[10]
Drury PP, Bennet L, Gunn AJ. Mechanisms of hypothermic neuroprotection[J]. Semin Fetal Neonatal Med, 2010, 15(5):287-292.
[11]
Silveira RC, Procianoy RS. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy[J]. J Pediatr (Rio J), 2015, 91(6 Suppl 1):S78-S83.
[12]
Dickinson H, Ellery S, Ireland Z, et al. Creatine supplementation during pregnancy:summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy[J]. BMC Pregnancy Childbirth, 2014, 14:150.
[13]
Tagin MA, Woolcott CG, Vincer MJ, et al. Hypothermia for neonatal hypoxic ischemic encephalopathy:an updated systematic review and meta-analysis[J]. Arch Pediatr Adolesc Med, 2012, 166(6):558-566.
[14]
Perlman JM, Wyllie J, Kattwinkel J, et al. Part 7:Neonatal resuscitation:2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations[J]. Circulation, 2015, 132(16 Suppl 1):S204-S241.
[15]
Trays G, Banerjee S. Fetal and neonatal hyperthermia[J]. Paediatr Child Health, 2014, 24(9):419-423.
[16]
Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic ischaemic encephalopathy[J]. Cochrane Database Syst Rev, 2013, (1):CD003311.
Rober tson NJ, Tan S, Groenendaal F, et al. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant?[J]. J Pediatr, 2012, 160(4):544-552.e4.
[19]
Broad KD, Fierens I, Fleiss B, et al. Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia[J]. Neurobiol Dis, 2016, 87:29-38.
[20]
Loetscher PD, Rossaint J, Rossaint R, et al. Argon:neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury[J]. Crit Care, 2009, 13(6):R206.
[21]
Obel LF, Müller MS, Walls AB, et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level[J]. Front Neuroenergetics, 2012, 4:3.
[22]
Mlody B, Lorenz C, Inak G, et al. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders[J]. Semin Cell Dev Biol, 2016, 52:102-109.
[23]
Shulman RG, Rothman DL, Behar KL, et al. Energetic basis of brain activity:implications for neuroimaging[J]. Trends Neurosci, 2004, 27(8):489-495.
[24]
Ellery SJ, Dickinson H, McKenzie M, et al. Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy-Creatine prophylaxis and the need for multi-organ protection[J]. Neurochem Int, 2016, 95:15-23.
[25]
Allah Yar R, Akbar A, Iqbal F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice[J]. Brain Res, 2015, 1595:92-100.
[26]
Iqbal S, Ali M, Iqbal F. Long term creatine monohydrate supplementation, following neonatal hypoxic ischemic insult, improves neuromuscular coordination and spatial learning in male albino mouse[J]. Brain Res, 2015, 1603:76-83.
[27]
Iqbal S, Ali M, Akbar A, et al. Effects of dietary creatine supplementation for 8 weeks on neuromuscular coordination and learning in male albino mouse following neonatal hypoxic ischemic insult[J]. Neurol Sci, 2015, 36(5):765-770.
[28]
Ellery SJ, LaRosa DA, Kett MM, et al. Maternal creatine homeostasis is altered during gestation in the spiny mouse:is this a metabolic adaptation to pregnancy?[J]. BMC Pregnancy Childbirth, 2015, 15:92.
[29]
Ireland Z, Dickinson H, Snow R, et al. Maternal creatine:does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)?[J]. Am J Obstet Gynecol, 2008, 198(4):431.e1-431.e6.
[30]
Ireland Z, Castillo-Melendez M, Dickinson H, et al. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia[J]. Neuroscience, 2011, 194:372-379.
[31]
Dickinson H, Ellery S, Ireland Z, et al. Creatine supplementation during pregnancy:summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy[J]. BMC Pregnancy Childbirth, 2014, 14:150.
[32]
Dolder M, Walzel B, Speer O, et al. Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation[J]. J Biol Chem, 2003, 278(20):17760-17766.
[33]
Meyer LE, Machado LB, Santiago AP, et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation:antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity[J]. J Biol Chem, 2006, 281(49):37361-37371.
[34]
Guidi C, Potenza L, Sestili P, et al. Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA[J]. Biochim Biophys Acta, 2008, 1780(1):16-26.
[35]
Turner CE, Byblow WD, Gant N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation[J]. J Neurosci, 2015, 35(4):1773-1780.
[36]
Sartini S, Lattanzi D, Ambrogini P, et al. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring[J]. Neuroscience, 2016, 312:120-129.
[37]
Andres RH, Ducray AD, Schlattner U, et al. Functions and effects of creatine in the central nervous system[J]. Brain Res Bull, 2008, 76(4):329-343.
[38]
Poortmans J, Francaux M. Adverse effects of creatine supplementation:fact or fiction?[J]. Sports Med, 2000, 30(3):155-170.
[39]
Dickinson H, Bain E, Wilkinson D, et al. Creatine for women in pregnancy for neuroprotection of the fetus[J]. Cochrane Database Syst Rev, 2014, (12):CD010846.
[40]
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles:biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5):347-357.
[41]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30:255-289.
[42]
Zappulli V, Friis KP, Fitzpatrick Z, et al. Extracellular vesicles and intercellular communication within the nervous system[J]. J Clin Invest, 2016, 126(4):1198-1207.
[43]
Baulch JE, Acharya MM, Allen BD, et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain[J]. Proc Natl Acad Sci U S A, 2016, 113(17):4836-4841.
[44]
Ophelders DR, Wolfs TG, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia[J]. Stem Cells Transl Med, 2016, 5(6):754-763.
[45]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cellderived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2013, 10(3):301-312.
[46]
Lindoso RS, Collino F, Bruno S, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23(15):1809-1819.
[47]
Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab, 2013, 33(11):1711-1715.
[48]
Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury[J]. J Neurosurg, 2015, 122(4):856-867.