Research advances in susceptible genes for developmental dyslexia in children
KONG Rui1,2, SONG Ran-Ran1
Department of Maternal and Child Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Abstract Developmental dyslexia in children is one of the neurodevelopmental disorders and is affected by various susceptible genes. In recent years, researchers have found some susceptible genes for dyslexia via chromosome analysis, genome-wide association studies, association analysis, gene function research, neuroimaging, and neurophysiological techniques. This article reviews the research advances in susceptible genes for developmental dyslexia, and with the study on susceptible genes for dyslexia, it lays a foundation for in-depth studies on the "gene-brain-behavior" level and provides scientific clues for exploring etiology and pathogenesis of dyslexia.
Schumacher J, Hoffmann P, Schmäl C, et al. Genetics of dyslexia:the evolving landscape[J]. J Med Genet, 2007, 44(5):289-297.
[2]
Taipale M, Kaminen N, Nopola-Hemmi J, et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain[J]. Proc Natl Acad Sci, 2003, 100(20):11553-11558.
[3]
Tran C, Gagnon F, Wigg KG, et al. A family-based association analysis and meta-analysis of the reading disabilities candidate gene DYX1C1[J]. Am J Med Genet B Neuropsychiatr Genet, 2013, 162(2):146-156.
[4]
Tarkar A, Loges NT, Slagle CE, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility[J]. Nat Genet, 2013, 45(9):995-1003.
[5]
Bates TC, Lind PA, Luciano M, et al. Dyslexia and DYX1C1:deficits in reading and spelling associated with a missense mutation[J]. Mol Psychiatry, 2009, 15(12):1190-1196.
[6]
Venkatesh SK, Siddaiah A, Padakannaya P, et al. Association of SNPs of DYX1C1 with developmental dyslexia in an Indian population[J]. Psychiatr Genet, 2014, 24(1):10-20.
[7]
Currier TA, Etchegaray MA, Haight JL, et al. The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex[J]. Neuroscience, 2011, 172:535-546.
[8]
Tammimies K, Vitezic M, Matsson H, et al. Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins[J]. Biol Psychiatry, 2013, 73(6):583-590.
[9]
Tammimies K, Tapia-Páez I, Rüegg J, et al. The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation[J]. Mol Endocrinol, 2012, 26(4):619-629.
[10]
Meng H, Smith SD, Hager K, et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain[J]. Proc Natl Acad Sci USA, 2005, 102(47):17053-17058.
[11]
Francks C, Paracchini S, Smith SD, et al. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States[J]. Am J Hum Genet, 2004, 75(6):1046-1058.
[12]
Marino C, Meng H, Mascheretti S, et al. DCDC2 genetic variants and susceptibility to developmental dyslexia[J]. Psychiatr Genet, 2012, 22(1):25-30.
[13]
Powers NR, Eicher JD, Butter F, et al. Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment[J]. Am J Hum Genet, 2013, 93(1):19-28.
[14]
Zhang Y, Li J, Song S, et al. Association of DCDC2 polymorphisms with normal variations in reading abilities in a Chinese population[J]. PLoS One, 2016, 11(4):e0153603.
[15]
Zhong R, Yang B, Tang H, et al. Meta-analysis of the association between DCDC2 polymorphisms and risk of dyslexia[J]. Mol Neurobiol, 2013, 47(1):435-442.
[16]
Müller B, Wilcke A, Czepezauer I, et al. Association, characterisation and meta-analysis of SNPs linked to general reading ability in a German dyslexia case-control cohort[J]. Sci Rep, 2016, 6:27901.
[17]
Scerri TS, Morris AP, Buckingham L, et al. DCDC2, KIAA0319 and CMIP are associated with reading-related traits[J]. Biol Psychiatry, 2011, 70(3):237-245.
[18]
Newbury DF, Paracchini S, Scerri TS, et al. Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects[J]. Behav Genet, 2011, 41(1):90-104.
[19]
Gabel LA, Gibson CJ, Gruen JR, et al. Progress towards a cellular neurobiology of reading disability[J]. Neurobiol Dis, 2010, 38(2):173-180.
[20]
Darki F, Peyrard-Janvid M, Matsson H, et al. Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure[J]. Biol Psychiatry, 2012, 72(8):671-676.
[21]
Marino C, Scifo P, Della Rosa PA, et al. The DCDC2/intron 2 deletion and white matter disorganization:focus on developmental dyslexia[J]. Cortex, 2014, 57:227-243.
[22]
Giraud A, Ramus F. Neurogenetics and auditory processing in developmental dyslexia[J]. Curr Opin Neurobiol, 2013, 23(1):37-42.
[23]
Serrallach B, Groß C, Bernhofs V, et al. Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children[J]. Front Neurosci, 2016, 10:324.
[24]
Eicher JD, Powers NR, Miller LL, et al. Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ[J]. Hum Genet, 2014, 133(7):869-881.
[25]
Velayos-Baeza A, Levecque C, Kobayashi K, et al. The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with γ-secretase-independent intramembrane cleavage[J]. J Biol Chem, 2010, 285(51):40148-40162.
[26]
Peschansky VJ, Burbridge TJ, Volz AJ, et al. The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat[J]. Cereb Cortex, 2010, 20(4):884-897.
[27]
Szalkowski CE, Fiondella CF, Truong DT, et al. The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats[J]. Int J Dev Neurosci, 2013, 31(2):116-122.
[28]
Marsh APL, Lukic V, Pope K, et al. Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss[J]. Neurol Genet, 2015, 1(2):e16.
[29]
Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, et al. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia[J]. PLoS Genet, 2005, 1(4):e50.
[30]
Tran C, Wigg KG, Zhang K, et al. Association of the ROBO1 gene with reading disabilities in a family-based analysis[J]. Genes Brain Behav, 2014, 13(4):430-438.
[31]
Bates TC, Luciano M, Medland SE, et al. Genetic variance in a component of the language acquisition device:ROBO1 polymorphisms associated with phonological buffer deficits[J]. Behav Genet, 2011, 41(1):50-57.
[32]
Mascheretti S, Riva V, Giorda R, et al. KIAA0319 and ROBO1:evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia[J]. J Hum Genet, 2014, 59(4):189-197.
[33]
Lamminmaki S, Massinen S, Nopola-Hemmi J, et al. Human ROBO1 regulates interaural interaction in auditory pathways[J]. J Neurosci, 2012, 32(3):966-971.
[34]
Anthoni H, Zucchelli M, Matsson H, et al. A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia[J]. Hum Mol Genet, 2006, 16(6):667-677.
[35]
Scerri TS, Darki F, Newbury DF, et al. The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure[J]. PLoS One, 2012, 7(11):e50321.
[36]
Wang HZ, Qin HD, Guo W, et al. New insights into the genetic mechanism of IQ in autism spectrum disorders[J]. Front Genet, 2013, 4:195.
[37]
Platt MP, Adler WT, Mehlhorn AJ, et al. Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders[J]. Neuroscience, 2013, 248:585-593.
[38]
Shao S, Kong R, Zou L, et al. The roles of genes in the neuronal migration and neurite outgrowth network in developmental dyslexia:single- and multiple-risk genetic variants[J]. Mol Neurobiol, 2016, 53(6):3967-3975.
[39]
Lai CS, Fisher SE, Hurst JA, et al. A forkhead-domain gene is mutated in a severe speech and language disorder[J]. Nature, 2001, 413(6855):519-523.
[40]
Vernes SC, Newbury DF, Abrahams BS, et al. A functional genetic link between distinct developmental language disorders[J]. N Engl J Med, 2008, 359(22):2337-2345.
[41]
Sia GM, Clem RL, Huganir RL. The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice[J]. Science, 2013, 342(6161):987-991.
Wilcke A, Ligges C, Burkhardt J, et al. Imaging genetics of FOXP2 in dyslexia[J]. Eur J Hum Genet, 2011, 20(2):224-229.
[44]
Chaly Y, Hostager B, Smith S, et al. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases[J]. Immunol Res, 2014, 59(1-3):266-272.
[45]
Song J, Teplova M, Ishibe-Murakami S, et al. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation[J]. Science, 2012, 335(6069):709-712.
[46]
Nott A, Cho S, Seo J, et al. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex[J]. Neuroepigenetics, 2015, 1:34-40.
[47]
Kong R, Shao S, Wang J, et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population[J]. Am J Med Genet B Neuropsychiatr Genet, 2016, 171(2):203-208.
[48]
Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs:glial contributions to the pathology and treatment of mood disorders[J]. Biol Psychiatry, 2013, 73(12):1172-1179.
[49]
Matsson H, Huss M, Persson H, et al. Polymorphisms in DCDC2 and S100B associate with developmental dyslexia[J]. J Hum Genet, 2015, 60(7):399-401.
[50]
Ueda S, Negishi M, Katoh H. Rac GEF Dock4 interacts with cortactin to regulate dendritic spine formation[J]. Mol Biol Cell, 2013, 24(10):1602-1613.
[51]
Scerri TS, Paracchini S, Morris A, et al. Identification of candidate genes for dyslexia susceptibility on chromosome 18[J]. PLoS One, 2010, 5(10):e13712.
[52]
Chen H, Xu J, Zhou Y, et al. Association study of stuttering candidate genes GNPTAB, GNPTG and NAGPA with dyslexia in Chinese population[J]. BMC Genet, 2015, 16(1):7.
[53]
Einarsdottir E, Svensson I, Darki F, et al. Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family[J]. Hum Genet, 2015, 134(11-12):1239-1248.
[54]
Mascheretti S, Facoetti A, Giorda R, et al. GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia[J]. Psychiatr Genet, 2015, 25(1):9-20.
[55]
Poelmans G, Buitelaar JK, Pauls DL, et al. A theoretical molecular network for dyslexia:integrating available genetic findings[J]. Mol Psychiatry, 2010, 16(4):365-382.