Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder

ZHOU Rong-Yi, WANG Jiao-Jiao, YOU Yue, SUN Ji-Chao, SONG Yu-Chen, YUAN Hai-Xia, HAN Xin-Min

Chinese Journal of Contemporary Pediatrics ›› 2017, Vol. 19 ›› Issue (5) : 576-582.

PDF(1779 KB)
PDF(1779 KB)
Chinese Journal of Contemporary Pediatrics ›› 2017, Vol. 19 ›› Issue (5) : 576-582. DOI: 10.7499/j.issn.1008-8830.2017.05.020
EXPERIMENTALRESEARCH

Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder

  • ZHOU Rong-Yi, WANG Jiao-Jiao, YOU Yue, SUN Ji-Chao, SONG Yu-Chen, YUAN Hai-Xia, HAN Xin-Min
Author information +
History +

Abstract

Objective To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC) /cyclic adenosine monophosphate (cAMP) /protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). Methods A total of 40 SHR rats were randomly divided into five groups:ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. Results Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P < 0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium-and high-dose baicalin groups had a significant increase in the ATPase activity (P < 0.05), a significant reduction in the LDH activity (P < 0.05), and significant increases in the content of AC, cAMP, and PKA (P < 0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P < 0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P < 0.05); the medium-and high-dose baicalin groups had a significant reduction in the LDH activity (P < 0.05) and significant increases in the content of AC, cAMP, and PKA (P < 0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P < 0.05). Conclusions Both methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.

Key words

Attention deficit hyperactivity disorder / Baicalin / Adenosine triphosphatase / Lactate dehydrogenase / AC/cAMP/PKA signaling pathway / Rats

Cite this article

Download Citations
ZHOU Rong-Yi, WANG Jiao-Jiao, YOU Yue, SUN Ji-Chao, SONG Yu-Chen, YUAN Hai-Xia, HAN Xin-Min. Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder[J]. Chinese Journal of Contemporary Pediatrics. 2017, 19(5): 576-582 https://doi.org/10.7499/j.issn.1008-8830.2017.05.020

References

[1] Tsai CC, Lin MT, Wang JJ, et al. The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits[J]. Neuropharmacology, 2006, 51(4):709-717.
[2] Kang MJ, Ko GS, Oh DG, et al. Role of metabolism by intestinal microbiota in pharmacokinetics of oral baicalin[J]. Arch Pharm Res, 2014, 37(3):371-378.
[3] Zeng L, Wang M, Yuan Y, et al. Simultaneous multi-component quantitation of Chinese herbal injection Yin-zhi-huang in rat plasma by using a single-tube extraction procedure for mass spectrometry-based pharmacokinetic measurement[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 967:245-254.
[4] Polanczyk G, de Lima MS, Horta BL, et al. The worldwide prevalence of ADHD:a systematic review and metaregression analysis[J]. Am J Psychiatry, 2007, 164(6):942-948.
[5] Swanson JM, Kinsbourne M, Nigg J, et al. Etiologic subtypes of attention deficit/hyperactivity disorder:brain imaging, molecular genetic and environmental factors and the dopamine hypothesis[J]. Neuropsychol Rev, 2007, 17(1):39-59.
[6] Harvey RC, Sen S, Deaciuc A, et al. Methylphenidate treatment in adolescent rats with an attention deficit/hyperactivity disorder phenotype:cocaine addiction vulnerability and dopamine transporter function[J]. Neuropsychopharmacology, 2011, 36(4):837-847.
[7] Napolitano F, Bonito-Oliva A, Federici M, et al. Role of aberrant striatal dopamine D1 receptor/cAMP/protein kinase A/DARPP32 signaling in the paradoxical calming effect of amphetamine[J]. J Neurosci, 2010, 30(33):11043-11056.
[8] Kitagishi Y, Minami A, Nakanishi A, et al. Neuron membrane trafficking and protein kinases involved in autism and ADHD[J]. Int J Mol Sci, 2015, 16(2):3095-3115.
[9] Baca M, Allan AM, Partridge LD, et al. Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice[J]. Brain Res, 2013, 1532:85-98.
[10] Zheng R, Yang L, Sikorski MA, et al. Deficiency of the RIIβ subunit of PKA affects locomotor activity and energy homeostasis in distinct neuronal populations[J]. Proc Natl Acad Sci U S A, 2013, 110(17):E1631-E1640.
[11] Few WP, Scheuer T, Catterall WA. Dopamine modulation of neuronal Na(+) channels requires binding of A kinase-anchoring protein 15 and PKA by a modified leucine zipper motif[J]. Proc Natl Acad Sci U S A, 2007, 104(12):5187-5192.
[12] 金国章. 多巴胺的神经化学[M]//金国章. 脑内多巴胺. 第2版. 上海:上海科技出版社, 2010:69-77.
[13] Somkuwar SS, Darna M, Kantak KM, et al. Adolescence methylphenidate treatment in a rodent model of attention deficit/hyperactivity disorder:dopamine transporter function and cellular distribution in adulthood[J]. Biochem Pharmacol, 2013, 86(2):309-316.
[14] Wang X, Zhang L, Hua L, et al. Effect of flavonoids in scutellariae radix on depression-like behavior and brain rewards:possible in dopamine system[J]. Tsinghua Sci Technol, 2010, 15(4):460-466.
[15] Im HI, Joo WS, Nam E, et al. Baicalein prevents 6-hydroxydopamine-induced dopaminergic dysfunction and lipid peroxidation in mice[J]. J Pharmacol Sci, 2005, 98(2):185-189.
[16] Mu X, He G, Cheng Y, et al. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro[J]. Pharmacol Biochem Behav, 2009, 92(4):642-648.
[17] Chen L, Zhang L, Wang X. Determination of dopamine and its relativity of baicalin in rat nuclei after intravenous administration of flavonoids from Scutellariae radix[J]. Biomed Chromatogr, 2007, 21(1):84-88.
[18] Zhou R, Han X, Wang J, et al. Baicalin may have a therapeutic effect in attention deficit hyperactivity disorder[J]. Med Hypotheses, 2015, 85(6):761-764.
[19] Sagvolden T, Johansen EB, Wøien G, et al. The spontaneously hypertensive rat model of ADHD-the importance of selecting the appropriate reference strain[J]. Neuropharmacology, 2009, 57(7-8):619-626.
[20] Cao AH, Yu L, Wang YW, et al. Effects of methylphenidate on attentional set-shifting in a genetic model of attention-deficit/hyperactivity disorder[J]. Behav Brain Funct, 2012, 8(1):10.
[21] Davids E, Zhang K, Tarazi FI, et al. Animal models of attention-deficit hyperactivity disorder[J]. Brain Res Rev, 2003, 42(1):1-21.
[22] Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats[J]. Jpn Circ J, 1963, 27:282-293.
[23] 周荣易, 王娇娇, 韩新民. ADHD实验动物模型比较研究[J]. 中国比较医学杂志, 2016, 26(9):88-92.
[24] Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited[J]. FASEB J, 2008, 22(3):659-661.
[25] 周荣易, 韩新民, 王娇娇, 等. SHR大鼠前额叶、纹状体突触体的提取方法[J]. 中国比较医学杂志, 2015, 25(12):59-64.
[26] 肖忠新, 魏守刚, 云少君, 等. 小鼠脑突触体制备方法的改进[J]. 中国康复理论与实践, 2010, 16(10):937-938.
[27] Dunkley PR, Jarvie PE, Robinson PJ. A rapid Percoll gradient procedure for preparation of synaptosomes[J]. Nat Protoc, 2008, 3(11):1718-1728.
[28] 陈宜张. 突触的化学传递[M]//陈宜张. 突触. 上海:上海科学技术出版社, 2014:17-27.
[29] 王昱. 盐酸克伦特罗对小鼠大脑皮层ATP、SDH、ADA和LDH活性的影响[J]. 甘肃农业大学学报, 2013, 48(2):21-25.
[30] Hugel S, Schlichter R. Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons[J]. J Neurosci, 2000, 20(6):2121-2130.
[31] Pankratov Y, Lalo U, Krishtal O, et al. Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex[J]. J Physiol, 2002, 542(Pt 2):529-536.
[32] 陈志武, 赵维中, 宋必卫, 等. 芸香甙对脑缺血再灌损伤的保护作用[J]. 中国药理学通报, 1998, 14(1):81-83.
[33] 苗明三, 陈元朋, 吴巍. 姜黄素对大鼠血瘀性脑缺血模型血液流变学及脑匀浆LD、LDH和TchE水平的影响[J]. 中药药理与临床, 2010, 26(1):29-31.
[34] 刘亮, 吕国蔚. 缺氧预适应小鼠脑匀浆去蛋白液对缺氧突触体膜的保护作用[J]. 中国神经科学杂志, 2001, 17(4):373-375.
[35] 董志, 曾凡新, 周岐新, 等. 脑细胞缺血离体模型-缺血突触体模型的建立与评价[J]. 中国临床神经科学, 2002, 10(2):192-194.
[36] Zhang DM, Liu HY, Xie L, et al. Effect of baicalin and berberine on transport of nimodipine on primary-cultured, rat brain microvascular endothelial cells[J]. Acta Pharmacol Sin, 2007, 28(4):573-578.
[37] Kwak S, Ku SK, Han MS, et al. Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo[J]. Toxicol Appl Pharmacol, 2014, 281(1):30-38.
[38] Liu XM, Feng Y, Li AM. Nerve protective effect of Baicalin on newborn HIBD rats[J]. Asia Pac J Trop Med, 2014, 7(10):806-810.
[39] 孙健, 刘健华, 王谦, 等. 电针对抑郁症大鼠海马组织AC-cAMP-PKA信号通路的影响[J]. 中国老年学杂志, 2010, 30(24):3672-3674.
[40] 孙继超, 周荣易, 雷爽, 等. 安神定志灵对ADHD模型大鼠前额叶、纹状体AC、cAMP的影响[J]. 中成药, 2016, 38(7):1605-1607.
[41] Loos M, Pattij T, Janssen MC, et al. Dopamine receptor D1/D5 gene expression in the medial prefrontal cortex predicts impulsive choice in rats[J]. Cereb Cortex, 2010, 20(5):1064-1070.
PDF(1779 KB)

Accesses

Citation

Detail

Sections
Recommended

/