Abstract Mercaptopurine is a common chemotherapeutic drug and immunosuppressive agent and plays an important role in the treatment of acute lymphoblastic leukemia and inflammatory bowel disease. It may cause severe adverse effects such as myelosuppression, which may result in the interruption of treatment or complications including infection or even threaten patients' lives. However, the adverse effects of mercaptopurine show significant racial and individual differences, which reveal the important role of genetic diversity. Recent research advances in pharmacogenomics have gradually revealed the genetic nature of such differences. This article reviews the recent research advances in the pharmacogenomics and individualized application of mercaptopurine.
Schmiegelow K, Nielsen SN, Frandsen TL, et al. Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia:clinical facts and fiction[J]. J Pediatr Hematol Oncol, 2014, 36(7):503-517.
[2]
Roberts RL, Barclay ML. Update on thiopurine pharmacogenetics in inflammatory bowel disease[J]. Pharmacogenomics, 2015, 16(8):891-903.
[3]
Cai JP, Ishibashi T, Takagi Y, et al. Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides[J]. Biochem Biophys Res Commun, 2003, 305(4):1073-1077.
[4]
Takagi Y, Setoyama D, Ito R, et al. Human MTH3(NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates:comparison with MTH1 and MTH2[J]. J Biol Chem, 2012, 287(25):21541-21549.
[5]
Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity[J]. RNA, 2013, 19(3):390-399.
[6]
Carter M, Jemth AS, Hagenkort A, et al. Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2[J]. Nat Commun, 2015, 6:7871.
[7]
Ebbesen MS, Nersting J, Jacobsen JH, et al. Incorporation of 6-thioguanine nucleotides into DNA during maintenance therapy of childhood acute lymphoblastic leukemia-the influence of thiopurine methyltransferase genotypes[J]. J Clin Pharmacol, 2013, 53(6):670-674.
[8]
Fotoohi AK, Coulthard SA, Albertioni F. Thiopurines:factors influencing toxicity and response[J]. Biochem Pharmacol, 2010, 79(9):1211-1220.
[9]
Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing[J]. Clin Pharmacol Ther, 2011, 89(3):387-391.
[10]
Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing:2013 update[J]. Clin Pharmacol Ther, 2013, 93(4):324-325.
[11]
Wang L, Weinshilboum R. Thiopurine S-methyltransferase pharmacogenetics:insights, challenges and future directions[J]. Oncogene, 2006, 25(11):1629-1638.
[12]
Li F, Wang L, Burgess RJ, et al. Thiopurine S-methyltransferase pharmacogenetics:autophagy as a mechanism for variant allozyme degradation[J]. Pharmacogenet Genomics, 2008, 18(12):1083-1094.
Schmiegelow K, Schrøder H, Gustafsson G, et al. Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. Nordic Society for Pediatric Hematology and Oncology[J]. J Clin Oncol, 1995, 13(2):345-351.
[15]
Bo J, Schrøder H, Kristinsson J, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells:relation to thiopurine metabolism[J]. Cancer, 1999, 86(6):1080-1086.
[16]
Schmiegelow K, Forestier E, Kristinsson J, et al. Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia:results from the NOPHO ALL-92 study[J]. Leukemia, 2009, 23(3):557-564.
[17]
Levinsen M, Rotevatn EO, Rosthoj S, et al. Pharmacogenetically based dosing of thiopurines in childhood acute lymphoblastic leukemia:influence on cure rates and risk of second cancer[J]. Pediatr Blood Cancer, 2014, 61(5):797-802.
[18]
Yang SK, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia[J]. Nat Genet, 2014, 46(9):1017-1020.
[19]
Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia[J]. J Clin Oncol, 2015, 33(11):1235-1242.
Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity[J]. Nat Genet, 2016, 48(4):367-373.
[22]
Valerie NC, Hagenkort A, Page BD, et al. NUDT15 hydrolyzes 6-Thio-DeoxyGTP to mediate the anticancer efficacy of 6-thioguanine[J]. Cancer Res, 2016, 76(18):5501-5511.
[23]
Liang DC, Yang CP, Liu HC, et al. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia[J]. Pharmacogenomics J, 2016, 16(6):536-539.
[24]
Tanaka Y, Kato M, Hasegawa D, et al. Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia[J]. Br J Haematol, 2015, 171(1):109-115.
[25]
Chiengthong K, Ittiwut C, Muensri S, et al. NUDT15 c.415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia[J]. Haematologica, 2016, 101(1):e24-e26.
[26]
Shah SA, Paradkar M, Desai D, et al. Nucleoside diphosphate-linked moiety X-type motif 15 C415T variant as a predictor for thiopurine induced toxicity in Indian patients[J]. J Gastroenterol Hepatol, 2017, 32(3):620-624.
[27]
Zhu X, Wang XD, Chao K, et al. NUDT15 polymorphisms are better than thiopurine S-methyltransferase as predictor of risk for thiopurine-induced leukopenia in Chinese patients with Crohn's disease[J]. Aliment Pharmacol Ther, 2016, 44(9):967-975.
[28]
Tzoneva G, Perez-Garcia A, Carpenter Z, et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL[J]. Nat Med, 2013, 19(3):368-371.
[29]
Galmarini CM, Jordheim L, Dumontet C. Role of IMP-selective 5'-nucleotidase (cN-Ⅱ) in hematological malignancies[J]. Leuk Lymphoma, 2003, 44(7):1105-1111.
[30]
Meyer JA, Wang J, Hogan LE, et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia[J]. Nat Genet, 2013, 45(3):290-294.
[31]
Li B, Li H, Bai Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL[J]. Nat Med, 2015, 21(6):563-571.
[32]
Mullighan CG. Mutant PRPS1:a new therapeutic target in relapsed acute lymphoblastic leukemia[J]. Nat Med, 2015, 21(6):553-554.
[33]
Thiopurine resistance in childhood ALL is mediated by PRPS1 mutations[J]. Cancer Discov, 2015, 5(7):693.
[34]
Marsh S, King CR, Ahluwalia R, et al. Distribution of ITPA P32T alleles in multiple world populations[J]. J Hum Genet, 2004, 49(10):579-581.
[35]
Cao H, Hegele RA. DNA polymorphisms in ITPA including basis of inosine triphosphatase deficiency[N]. J Hum Genet, 2002, 47(11):620-602.
[36]
Simone PD, Pavlov YI, Borgstahl GE. ITPA (inosine triphosphate pyrophosphatase):from surveillance of nucleotide pools to human disease and pharmacogenetics[J]. Mutat Res, 2013, 753(2):131-146.
[37]
Adam de Beaumais T, Fakhoury M, Medard Y, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy[J]. Br J Clin Pharmacol, 2011, 71(4):575-584.
[38]
Nygaard U, Toft N, Schmiegelow K. Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity[J]. Clin Pharmacol Ther, 2004, 75(4):274-281.
[39]
Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia[J]. Clin Pharmacol Ther, 2009, 85(2):164-172.
[40]
Karas-Kuzelicki N, Milek M, Mlinaric-Rascan I. MTHFR and TYMS genotypes influence TPMT activity and its differential modulation in males and females[J]. Clin Biochem, 2010, 43(1-2):37-42.
Tanaka Y, Manabe A, Nakadate H, et al. Methylenetetrahydrofolate reductase gene haplotypes affect toxicity during maintenance therapy for childhood acute lymphoblastic leukemia in Japanese patients[J]. Leuk Lymphoma, 2014, 55(5):1126-1131.
[43]
Karas-Kuzelicki N, Jazbec J, Milek M, et al. Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients[J]. Leukemia, 2009, 23(5):971-974.
[44]
Seinen ML, van Asseldonk DP, de Boer NK, et al. The effect of allopurinol and low-dose thiopurine combination therapy on the activity of three pivotal thiopurine metabolizing enzymes:results from a prospective pharmacological study[J]. J Crohns Colitis, 2013, 7(10):812-819.
[45]
Giamanco NM, Cunningham BS, Klein LS, et al. Allopurinol use during maintenance therapy for acute lymphoblastic leukemia avoids mercaptopurine-related hepatotoxicity[J]. J Pediatr Hematol Oncol, 2016, 38(2):147-151.
[46]
Zerra P, Bergsagel J, Keller FG, et al. Maintenance treatment with low-dose mercaptopurine in combination with allopurinol in children with acute lymphoblastic leukemia and mercaptopurine-induced pancreatitis[J]. Pediatr Blood Cancer, 2016, 63(4):712-715.
[47]
Brackett J, Schafer ES, Leung DH, et al. Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism[J]. Pediatr Blood Cancer, 2014, 61(6):1114-1117.
[48]
Blaker PA, Arenas-Hernandez M, Smith MA, et al. Mechanism of allopurinol induced TPMT inhibition[J]. Biochem Pharmacol, 2013, 86(4):539-547.
[49]
Blaker PA, Arenas M, Fairbanks L, et al. A biochemical mechanism for the role of allopurinol in TMPT inhibition[J]. Gastroenterology, 2011, 140(5):S-769.