Abstract Hirschsprung's disease (HSCR) is one of the major causes of chronic incomplete intestinal obstruction in children. HSCR is considered a type of neurocristopathy caused by no colonization of ganglion cells on some parts of the bowel wall due to abnormal termination of the migration of vagal neural cells during embryonic development. This disease can be classified into different types according to the length of the affected intestinal canal. Most HSCR patients present with single deformity, but some HSCR patients are affected by other deformities, which constitutes syndromic HSCR, such as congenital central hypoventilation syndrome, Fryns syndrome, and cartilage-hair hypoplasia syndrome. Most syndromes have abnormal genetic material. An adequate knowledge of syndromic HSCR is of vital importance for accurate diagnosis and prognostic evaluation. This article reviews the clinical manifestations, genetic basis, and genetic modes of different types of syndromic HSCR.
Bahrami A, Joodi M, Moetamani-Ahmadi M, et al. Genetic background of Hirschsprung disease:A bridge between basic science and clinical application[J]. J Cell Biochem, 2018, 119(1):28-33.
[2]
Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics:a review[J]. J Med Genet, 2001, 38(11):729-739.
Friedmacher F, Puri P. Classification and diagnostic criteria of variants of Hirschsprung's disease[J]. Pediatr Surg Int, 2013, 29(9):855-872.
[6]
Nakamura H, Henderson D, Puri P. A meta-analysis of clinical outcome of intestinal transplantation in patients with total intestinal aganglionosis[J]. Pediatr Surg Int, 2017, 33(4):1-5.
[7]
Verdy M, Weber AM, Roy CC, et al. Hirschsprung's disease in a family with multiple endocrine neoplasia type 2[J]. J Pediatr Gastroenterol Nutr, 1982, 1(4):603-607.
[8]
Garavelli L, Ivanovski I, Caraffi SG, et al. Neuroimaging findings in Mowat-Wilson syndrome:a study of 54 patients[J]. Genet Med, 2016, 19(6):691-700.
[9]
Doubaj Y, Pingault V, Elalaoui SC, et al. A novel mutation in the endothelin B receptor gene in a moroccan family with shahwaardenburg syndrome[J]. Mol Syndromol, 2015, 6(1):44-49.
[10]
Lefcort F, Mergy M, Ohlen SB, et al. Erratum to:Animal and cellular models of familial dysautonomia[J]. Clin Auton Res, 2017, 27(4):235-243.
[11]
Mcinerney AM, Harris JE, Gattas M, et al. Fryns syndrome associated with recessive mutations in PIGN in two separate families[J]. Hum Mutat, 2016, 37(7):695-702.
[12]
Di Zanni E, Adamo A, Belligni E, et al. Common PHOX2B poly-Alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease[J]. Biochim Biophys Acta, 2017, 1863(7):1770-1777.
[13]
Zupan A, Glavač D. The development of rapid and accurate screening test for RET hotspot somatic and germline mutations in MEN2 syndromes[J]. Exp Mol Pathol, 2015, 99(3):416-425.
[14]
Norton JA, Krampitz G, Jensen RT. Multiple endocrine neoplasia:Genetics and clinical management[J]. Surg Oncol Clin N Am, 2015, 24(4):795-832.
[15]
Mowat DR, Croaker GD, Cass DT, et al. Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features:delineation of a new syndrome and identification of a locus at chromosome 2q22-q23[J]. J Med Genet, 1998, 35(8):617-623.
[16]
Liang F, Zhao M, Fan L, et al. Identification of a de novo mutation of SOX10 in a Chinese patient with Waardenburg syndrome type IV[J]. Int J Pediatr Otorhinolaryngol, 2016, 91:67-71.
Falah N, Posey JE, Thorson W, et al. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease[J]. Am J Med Gene A, 2017, 173:1066-1070.
Bar-Shai A, Maayan C, Vromen A, et al. Decreased density of ganglia and neurons in the myenteric plexus of familial dysautonomia patients[J]. J Neurol Sci, 2004, 220(1-2):89-94.
[21]
Azizi E, Berlowitz I, Vinograd I, et al. Congenital megacolon associated with familial dysautonomia[J]. Eur J Pediatr, 1984, 142(1):68-69.
[22]
Cohen-Kupiec R, Pasmanik-Chor M, Oron-Karni V, et al. Effects of IKAP/hELP1 deficiency on gene expression in differentiating neuroblastoma cells:implications for familial dysautonomia[J]. PLoS One, 2011, 6(4):e19147.
[23]
Cheng WW, Tang CS, Gui HS, et al. Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype[J]. World J Gastroenterol, 2015, 21(7):2040-2046.
[24]
Dietrich P, Dragatsis I. Familial dysautonomia:mechanisms and models[J]. Genet Mol Biol, 2016, 39(4):497-514.
[25]
Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia:history, genotype, phenotype and translational research[J]. Prog Neurobiol, 2017, 152:131-148.
[26]
Mendoza-Santiesteban CE, Hedges Iii TR, Norcliffe-Kaufmann L, et al. Selective retinal ganglion cell loss in familial dysautonomia[J]. J Neurol, 2014, 261(4):702-709.
[27]
Mendoza-Santiesteban CE, Hedges TR 3rd, Norcliffe-Kaufmann L, et al. Clinical neuro-ophthalmic findings in familial dysautonomia[J]. J Neuroophthalmol, 2012, 32(1):23-26.
[28]
Mendoza-Santiesteban CE, Palma JA, Hedges TR 3rd, et al. Pathological confirmation of optic neuropathy in familial dysautonomia[J]. J Neuropathol Exp Neurol, 2017, 76(3):238-244.
[29]
Parisi MA, Zayed H, Slavotinek AM, et al. Congenital diaphragmatic hernia and microtia in a newborn with mycophenolate mofetil (MMF) exposure:phenocopy for Fryns syndrome or broad spectrum of teratogenic effects?[J]. Am J Med Genet A, 2009, 149A(6):1237-1240.
[30]
Verkaeren E, Brion A, Hurbault A, et al. Health-related quality of life in young adults with congenital central hypoventilation syndrome due to PHOX2B mutations:a cross-sectional study[J]. Respir Res, 2015, 16(1):80-86.
Tallman KA, Kim HH, Korade Z, et al. Probes for protein adduction in cholesterol biosynthesis disorders:Alkynyl lanosterol as a viable sterol precursor[J]. Redox Biol, 2017, 12(C):182-190.
[33]
Klemetti P, Valta H, Kostjukovits S, et al. Cartilage-hair hypoplasia with normal height in childhood-4 patients with a unique genotype[J]. Clin Genet, 2017, 92(2):204-207.
[34]
Tobin JL, Di Franco M, Eichers E, et al. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung's disease in Bardet-Biedl syndrome[J]. Proc Natl Acad Sci U S A, 2008, 105(18):6714-6719.
[35]
Dafsari HS, Byrne S, Lin J, et al. Goldberg-Shprintzen megacolon syndrome with associated sensory motor axonal neuropathy[J]. Am J Med Genet A, 2015, 167(6):1300-1304.
[36]
Solga AC, Toonen JA, Pan Y, et al. The cell of origin dictates the temporal course of neurofibromatosis-1(NF-1) low-grade glioma formation[J]. Oncotarget, 2017, 8(29):47206-47215.
[37]
Nakakimura S, Sasaki F, Okada T. Hirschsprung's disease, acrocallosal syndrome, and congenital hydrocephalus:report of 2 patients and literature review[J]. J Pediatr Surg, 2008, 43(5):E13-17.
[38]
Bianconi SE, Cross JL, Wassif CA, et al. Pathogenesis, epidemiology, diagnosis and clinical aspects of Smith-Lemli-Opitz syndrome[J]. Expert Opin Orphan Drugs, 2015, 3(3):267-280.
[39]
Riley P Jr, Weiner DS, Leighley B, et al. Cartilage hair hypoplasia:characteristics and orthopaedic manifestations[J]. J Child Orthop, 2015, 9(2):145-152.
[40]
Cherkaoui Jaouad I, Laarabi FZ, Chafai Elalaoui S, et al. Novel mutation and structural RNA analysis of the noncoding RNase MRP gene in cartilage-hair hypoplasia[J]. Mol Syndromol, 2015, 6(2):77-82.
[41]
Castro-Sánchez S, Álvarez-Satta M, Cortón M, et al. Exploring genotype-phenotype relationships in Bardet-Biedl syndrome families[J]. J Med Genet, 2015, 52(8):503-513.
[42]
Forsythe E, Beales PL. Bardet-Biedl syndrome[J]. Eur J Hum Genet, 2013, 21(1):8-13.
[43]
Goldberg RB, Shprintzen RJ. Hirschsprung megacolon and cleft palate in two sibs[J]. J Craniofac Genet Dev Biol, 1981, 1(2):185-189.
[44]
Kevenaar JT, Bianchi S, van Spronsen M, et al. Kinesin-binding protein controls microtubule dynamics and cargo trafficking by regulating kinesin motor activity[J]. Curr Biol, 2016, 26(7):849-861.
[45]
Craigie RJ, Ba'Ath M, Fryer A, et al. Surgical implications of the Smith-Lemli-Opitz syndrome[J]. Pediatr Surg Int, 2005, 21(6):482-484.
[46]
Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression[J]. Nat Neurosci, 2016, 19(1):20-27.
[47]
Stowe IB, Mercado EL, Stowe TR, et al. A shared molecular mechanism underlies the human rasopathies Legius syndrome and neurofibromatosis-1[J]. Genes Dev, 2012, 26(13):1421-1426.