Abstract The etiology and pathogenesis of autism spectrum disorder (ASD) are not yet clear. Studies have shown that there are many neurotransmitter abnormalities in children with ASD, mainly involving in glutamate, γ-aminobutyric acid (GABA), dopamine, 5-HT and oxytocin. The imbalance of excitatory glutamatergic neurotransmitters and inhibitory GABAergic neurotransmitters is closely related to the pathogenesis of ASD. Both animal model studies and clinical studies on ASD suggest that GABA signaling pathway may play an important role in the pathogenesis of ASD. This article reviews the research on the association between GABA signaling pathway and the pathogenesis of ASD to further explore the pathogenesis of ASD and provide theoretical basis for the treatment of ASD.
WANG Bing,LI Hong-Hua,YUE Xiao-Jing et al. A review on the role of γ-aminobutyric acid signaling pathway in autism spectrum disorder[J]. CJCP, 2018, 20(11): 974-979.
WANG Bing,LI Hong-Hua,YUE Xiao-Jing et al. A review on the role of γ-aminobutyric acid signaling pathway in autism spectrum disorder[J]. CJCP, 2018, 20(11): 974-979.
Developmental Disabilities Monitoring Monitor Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2010[J]. MMWR Surveill Summ, 2014, 63(2):1-21.
[2]
Erickson CA, Wink LK, Early MC, et al. Brief report:pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder[J]. J Autism Dev Disord, 2014, 44(4):981-987.
[3]
Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the autistic brain[J]. Curr Biol, 2016, 26(1):80-85.
[4]
Hussman JP. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism[J]. J Autism Dev Disord, 2001, 31(2):247-248.
[5]
Collins AL, Ma D, Whitehead PL, et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups[J]. Neurogenetics, 2006, 7(3):167-174.
[6]
Ashley-Koch AE, Mei H, Jaworski J, et al. An analysis paradigm for investigating multi-locus effects in complex disease:examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder[J]. Ann Hum Genet, 2006, 70(Pt 3):281-292.
[7]
Ma DQ, Whitehead PL, Menold MM, et al. Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism[J]. Am J Hum Genet, 2005, 77(3):377-388.
[8]
Cellot G, Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders[J]. Front Pediatr, 2014, 2:70.
[9]
Cellot G, Maggi L, Di Castro MA, et al. Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice[J]. Sci Rep, 2016, 6:31696.
[10]
Gogolla N, Leblanc JJ, Quast KB, et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism[J]. J Neurodev Disord, 2009, 1(2):172-181.
[11]
Ito S. GABA and glycine in the developing brain[J]. J Physiol Sci, 2016, 66(5):375-379.
[12]
Schulte JT, Wierenga CJ, Bruining H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions[J]. Neurosci Biobehav Rev, 2018, 90:260-271.
[13]
Meador KJ, Loring DW. Risks of in utero exposure to valproate[J]. JAMA, 2013, 309(16):1730-1731.
[14]
Tyzio R, Nardou R, Ferrari DC. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring[J]. Science, 2014, 343(6171):675-679.
[15]
Corradini I, Focchi E, Rasile M, et al. Maternal immune activation delays excitatory-to-inhibitory gamma-aminobutyric acid switch in offspring[J]. Biol Psychiatry, 2018, 83(8):680-691.
[16]
Hunter J, Rivero-Arias O, Angelov A, et al. Epidemiology of fragile X syndrome:a systematic review and meta-analysis[J]. Am J Med Genet A, 2014, 164A(7):1648-1658.
[17]
Kidd SA, Lachiewicz A, Barbouth D, et al. Fragile X syndrome:a review of associated medical problems[J]. Pediatrics, 2014, 134(5):995-1005.
[18]
Lozano R, Rosero CA, Hagerman RJ. Fragile X spectrum disorders[J]. Intractable Rare Dis Res, 2014, 3(4):134-146.
[19]
Williams TA, Porter MA, Langdon R. Social approach and emotion recognition in fragile X syndrome[J]. Am J Intellect Dev Disabil, 2014, 119(2):133-150.
[20]
Braat S, Kooy RF. The GABAA receptor as a therapeutic target for neurodevelopmental disorders[J]. Neuron, 2015, 86(5):1119-1130.
[21]
Zeidler S, Pop AS, Jaafar IA, et al. Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model[J]. Brain Behav, 2018, 8(6):e00991.
[22]
Chao HT, Chen H, Samaco RC, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes[J]. Nature, 2010, 468(7321):263-269.
[23]
Pizzarelli R, Cherubini E. Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice:an animal model of Autism[J]. Front Cell Neurosci, 2013, 7:85.
[24]
Jaramillo TC, Liu S, Pettersen A, et al. Autism-related neuroligin-3 mutation alters social behavior and spatial learning[J]. Autism Res, 2014, 7(2):264-272.
[25]
Sgadò P, Genovesi S, Kalinovsky A, et al. Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice:Implications for autism spectrum disorders[J]. Exp Neurol, 2013, 247:496-505.
[26]
El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders[J]. J Neuroinflammation, 2014, 11:189.
[27]
Oblak A, Gibbs TT, Blatt GJ. Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism[J]. Autism Res, 2009, 2(4):205-219.
[28]
Oblak AL, Gibbs TT, Blatt GJ. Decreased GABA(B) receptors in the cingulated cortex and fusiform gyrus in autism[J]. J Neurochem, 2010, 114(5):1414-1423.
[29]
Guptill JT, Booker AB, Gibbs TT, et al.[3H]-flunitrazepamlabeled benzodiazepine binding sites in the hippocampal formation in autism:a multiple concentration autoradiographic study[J]. J Autism Dev Disord, 2007, 37(5):911-920.
[30]
Whitney ER, Kemper TL, Bauman ML, et al. Cerebellar purkinje cells are reduced in a subpopulation of autistic brains:a stereological experiment using calbindin-D28k[J]. Cerebellum, 2008, 7(3):406-416.
[31]
Fatemi SH, Reutiman TJ, Folsom TD, et al. mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism[J]. J Autism Dev Disord, 2010, 40(6):743-750.
[32]
Crider A, Pandya CD, Peter D, et al. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder[J]. Mol Autism, 2014, 5:45.
[33]
Mori T, Mori K, Fujii E, et al. Evaluation of the GABAergic nervous system in autistic brain:(123)I-iomazenil SPECT study[J]. Brain Dev, 2012, 34(8):648-654.
[34]
Mendez MA, Horder J, Myers J, et al. The brain GABAbenzodiazepine receptor alpha-5 subtype in autism spectrum disorder:a pilot[(11)C]Ro15-4513 positron emission tomography study[J]. Neuropharmacology, 2013, 68:195-201.
[35]
Horder J, Petrinovic MM, Mendez MA, et al. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models[J]. Transl Psychiatry, 2018, 8(1):106.
[36]
Kirkovski M, Suo C, Enticott PG, et al. Short communication:sex-linked differences in gamma-aminobutyric acid (GABA) are related to social functioning in autism spectrum disorder[J]. Psychiatry Res Neuroimaging, 2018, 274:19-22.
[37]
Rojas DC, Becker KM, Wilson LB. Magnetic resonance spectroscopy studies of glutamate and GABA in autism:implications for excitation-inhibition imbalance theory[J]. Curr Dev Disord Rep, 2015, 2(1):46-57.
[38]
Gaetz W, Bloy L, Wang DJ, et al. GABA estimation in the brains of children on the autism spectrum:measurement precision and regional cortical variation[J]. Neuroimage, 2014, 86:1-9.
[39]
Kubas B, Kułak W, Sobaniec W, et al. Metabolite alterations in autistic children:a 1H MR spectroscopy study[J]. Adv Med Sci, 2012, 57(1):152-156.
[40]
Rojas DC, Singel D, Steinmetz S, et al. Decreased left perisylvian GABA concentration in children with autism and unaffected siblings[J]. Neuroimage, 2014, 86:28-34.
[41]
Cochran DM, Sikoglu EM, Hodge SM, et al. Relationship among glutamine, γ-aminobutyric acid, and social cognition in autism spectrum disorders[J]. J Child Adolesc Psychopharmacol, 2015, 25(4):314-322.
[42]
Brix MK, Ersland L, Hugdahl K, et al. Brain MR spectroscopy in autism spectrum disorder-the GABA excitatory/inhibitory imbalance theory revisited[J]. Front Hum Neurosci, 2015, 9:365.
[43]
Puts NAJ, Wodka EL, Harris AD, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder[J]. Autism Res, 2017, 10(4):608-619.
[44]
Balz J, Keil J, Roa Romero Y, et al. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion[J]. Neuroimage, 2016, 125:724-730.
[45]
Port RG, Gaetz W, Bloy L, et al. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD:Evidence for an altered maturational trajectory in ASD[J]. Autism Res, 2017, 10(4):593-607.
[46]
Duarte ST, Armstrong J, Roche A, et al. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome[J]. PLoS One, 2013, 8(7):e68851.
[47]
Cohen BI. Use of a GABA-transaminase agonist for treatment of infantile autism[J]. Med Hypotheses, 2002, 59(1):115-116.
[48]
Lemonnier E, Ben-Ari Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects[J]. Acta Paediatr, 2010, 99(12):1885-1888.
[49]
Du L, Shan L, Wang B, et al. A pilot study on the combination of applied behavior analysis and bumetanide treatment for children with autism[J]. J Child Adolesc Psychophamacol, 2015, 25(7):585-588.
[50]
Liu SC, Jia FY, Xia TL, et al. Cognitive dysfunction and bumetanide treatment in a valproate-induced rat model of autism[J]. Int J Clin Exp Med, 2016, 9(12):23363-23374.
[51]
Mann K, Kiefer F, Spanagel R, et al. Acamprosate:recent findings and future research directions[J]. Alcohol Clin Exp Res, 2008, 32(7):1105-1110.
[52]
Erickson CA, Mullett JE, McDougle CJ. Brief report:acamprosate in fragile X syndrome[J]. J Autism Dev Disord, 2010, 40(11):1412-1416.
[53]
Erickson CA, Veenstra-Vanderweele JM, Melmed RD, et al. STX209(arbaclofen) for autism spectrum disorders:an 8-week open-label study[J]. J Autism Dev Disord, 2014, 44(4):958-964.
[54]
Silverman JL, Pride MC, Hayes JE, et al. GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism[J]. Neuropsychopharmacology, 2015, 40(9):2228-2239.
[55]
Tyzio R, Nardou R, Ferrari DC, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring[J]. Science, 2014, 343(6171):675-679.
[56]
Zinni M, Colella M, Batista Novais AR, et al. Modulating the oxytocin system during the perinatal period:a new strategy for neuroprotection of the immature brain[J]. Front Neurol, 2018, 9:229.
[57]
Harden SW, Frazier CJ. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus[J]. Hippocampus, 2016, 26(9):1124-1139.
[58]
Han S, Tai C, Jones CJ, et al. Enhancement of inhibitory neurotransmission by GABAA receptors having α2, 3-subunits ameliorates behavioral deficits in a mouse model of autism[J]. Neuron, 2014, 81(6):1282-1289.
[59]
Feng J, Shan L, Du L, et al. Clinical improvement following vitamin D3 supplementation in Autism Spectrum Disorder[J]. Nutr Neurosci, 2017, 20(5):284-290.
[60]
Sato K. Why is vitamin B6 effective in alleviating the symptoms of autism[J]? Med Hypotheses, 2018, 115:103-106.
[61]
Merner ND, Chandler MR, Bourassa C, et al. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia[J]. Front Cell Neurosci, 2015, 9:386.
[62]
Amin H, Marinaro F, De Pietri Tonelli D, et al. Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome:a potential target for clinical therapeutics[J]. Sci Rep, 2017, 7(1):15752.
[63]
Hogart A, Nagarajan RP, Patzel KA, et al. 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders[J]. Hum Mol Genet, 2007, 16(6):691-703.
[64]
Nakai N, Nagano M, Saitow F, et al. Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice[J]. Sci Adv, 2017, 3(6):e1603001.
[65]
Griswold AJ, Ma D, Cukier HN. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways[J]. Hum Mol Genet, 2012, 21(15):3513-3523.
[66]
Chang J, Gilman SR, Chiang AH, et al. Genotype to phenotype relationships in autism spectrum disorders[J]. Nat Neurosci, 2015, 18(2):191-198.
[67]
Soghomonian JJ, Zhang K, Reprakash S, et al. Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism[J]. Autism Res, 2017, 10(11):1787-1796.