Abstract Objective To study the effect of dexamethasone (DEX) on the expression of Dynein heavy chain (DHC) and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured in vitro. Methods Primary cerebral cortical neurons of fetal rats were cultured in vitro and were used to establish a cellular model of DEX intervention. According to the final concentration of DEX, the neurons were divided into three groups:control (without DEX), 0.1 μmol/L DEX, and 1.0 μmol/L DEX. On days 1, 3, and 7 after intervention, the quantitative PCR was used to observe the effect of DEX on the mRNA expression of DHC and Dynactin. The Western blot was used to observe the effect of DEX on the protein expression of DHC and Dynactin. Results There was no significant difference in the mRNA expression levels of DHC and Dynactin among the three groups at all time points (P > 0.05). On day 7 after DEX intervention, the protein expression of DHC in the 1.0 μmol/L DEX group gradually increased and reached the peak over time, which was significantly higher than that in the control and 0.1 μmol/L DEX groups (P < 0.05). The control and 0.1 μmol/L DEX groups had a significant increase in the protein expression of Dynactin from day 1 to days 3 and 7 after DEX intervention (P < 0.05). The control group had a significant increase in the protein expression of Dynactin from day 3 to day 7 after intervention (P < 0.05), while the 0.1 μmol/L DEX group had a significant reduction in the protein expression of Dynactin from day 3 to day 7 after intervention (P < 0.05). On days 3 and 7 after DEX intervention, the 0.1 μmol/L DEX and 1.0 μmol/L DEX groups had a significantly lower protein expression level of Dynactin in the cerebral cortical neurons than the control group (P < 0.05). On day 7 after DEX intervention, the 1.0 μmol/L DEX group had a significantly lower protein expression level of Dynactin than the 0.1 μmol/L DEX group (P < 0.05). Conclusions DEX affects the protein expression of DHC and Dynactin in the fetal rat cerebral cortical neurons cultured in vitro, possibly in a concentration- and time-dependent manner.
CHENG Lin,XIE Zi-Yun,LI Jian et al. Effect of dexamethasone on the expression of Dynein heavy chain and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured in vitro[J]. CJCP, 2021, 23(6): 639-644.
CHENG Lin,XIE Zi-Yun,LI Jian et al. Effect of dexamethasone on the expression of Dynein heavy chain and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured in vitro[J]. CJCP, 2021, 23(6): 639-644.
Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants[J]. Pediatrics, 1972, 50(4):515-525. PMID:4561295.
[2]
Hallman M. The story of antenatal steroid therapy before preterm birth[J]. Neonatology, 2015, 107(4):352-357. DOI:10.1159/000381130. PMID:26044103.
[3]
Doyle LW, Cheong JL, Ehrenkranz RA, et al. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 2017, 10(10):CD001146. DOI:10.1002/14651858.CD001146.pub5. PMID:29063585.
[4]
Doyle LW, Cheong JL, Ehrenkranz RA, et al. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 2017, 10(10):CD001145. DOI:10.1002/14651858.CD001145.pub4. PMID:29063594.
[5]
Scott SM, Rose SR. Use of glucocorticoids for the fetus and preterm infant[J]. Clin Perinatol, 2018, 45(1):93-102. DOI:10.1016/j.clp.2017.11.002. PMID:29406009.
[6]
Zhang RL, Bo T, Shen L, et al. Effect of dexamethasone on intelligence and hearing in preterm infants:a meta-analysis[J]. Neural Regen Res, 2014, 9(6):637-645. DOI:10.4103/1673-5374.130085. PMID:25206867.
[7]
Nürnberg E, Horschitz S, Schloss P, et al. Basal glucocorticoid receptor activation induces proliferation and inhibits neuronal differentiation of human induced pluripotent stem cell-derived neuronal precursor cells[J]. J Steroid Biochem Mol Biol, 2018, 182:119-126. DOI:10.1016/j.jsbmb.2018.04.017. PMID:29751108.
[8]
Chen QF, Wang FF, Zhang YC, et al. Neonatal DEX exposure leads to hyperanxious and depressive-like behaviors as well as a persistent reduction of BDNF expression in developmental stages[J]. Biochem Biophys Res Commun, 2020, 527(1):311-316. DOI:10.1016/j.bbrc.2020.04.084. PMID:32446386.
[9]
Hippenmeyer S. Molecular pathways controlling the sequential steps of cortical projection neuron migration[J]. Adv Exp Med Biol, 2014, 800:1-24. DOI:10.1007/978-94-007-7687-6_1. PMID:24243097.
[10]
Dantas TJ, Carabalona A, Hu DJ, et al. Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development[J]. Cytoskeleton (Hoboken), 2016, 73(10):566-576. DOI:10.1002/cm.21293. PMID:26994401.
[11]
Shi L, Muthusamy N, Smith D, et al. Dynein binds and stimulates axonal motility of the endosome adaptor and NEEP21 family member, calcyon[J]. Int J Biochem Cell Biol, 2017, 90:93-102. DOI:10.1016/j.biocel.2017.07.005. PMID:28734834.
[12]
Bercier V, Hubbard JM, Fidelin K, et al. Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities[J]. Mol Neurodegener, 2019, 14(1):27. DOI:10.1186/s13024-019-0327-3. PMID:31291987.
[13]
Carter AP, Diamant AG, Urnavicius L. How dynein and dynactin transport cargos:a structural perspective[J]. Curr Opin Struct Biol, 2016, 37:62-70. DOI:10.1016/j.sbi.2015.12.003. PMID:26773477.
Chen YL, Xu YF, Li GQ, et al. Exome sequencing identifies de novo DYNC1H1 mutations associated with distal spinal muscular atrophy and malformations of cortical development[J]. J Child Neurol, 2017, 32(4):379-386. DOI:10.1177/0883073816683083. PMID:28193117.
[16]
Olenick MA, Dominguez R, Holzbaur ELF. Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons[J]. J Cell Biol, 2019, 218(1):220-233. DOI:10.1083/jcb.201805016. PMID:30373907.
[17]
Francis F, Cappello S. Neuronal migration and disorders - an update[J]. Curr Opin Neurobiol, 2021, 66:57-68. DOI:10.1016/j.conb.2020.10.002. PMID:33096394.
[18]
Scoto M, Rossor AM, Harms MB, et al. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy[J]. Neurology, 2015, 84(7):668-679. DOI:10.1212/WNL.0000000000001269. PMID:25609763.
[19]
Tirumala NA, Ananthanarayanan V. Role of dynactin in the intracellular localization and activation of cytoplasmic dynein[J]. Biochemistry, 2020, 59(2):156-162. DOI:10.1021/acs.biochem.9b00772. PMID:31591892.
[20]
Htet ZM, Gillies JP, Baker RW, et al. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes[J]. Nat Cell Biol, 2020, 22(5):518-525. DOI:10.1038/s41556-020-0506-z. PMID:32341549.
Nicholas MP, Höök P, Brenner S, et al. Control of cytoplasmic dynein force production and processivity by its C-terminal domain[J]. Nat Commun, 2015, 6:6206. DOI:10.1038/ncomms7206. PMID:25670086.
[23]
Hoogenraad CC, Akhmanova A. Bicaudal D family of motor adaptors:linking dynein motility to cargo binding[J]. Trends Cell Biol, 2016, 26(5):327-340. DOI:10.1016/j.tcb.2016.01.001. PMID:26822037.
[24]
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and docking at the immune synapse:role of tubulin dynamics and molecular motors[J]. Front Immunol, 2018, 9:1174. DOI:10.3389/fimmu.2018.01174. PMID:29910809.
[25]
Levy JR, Holzbaur EL. Cytoplasmic dynein/dynactin function and dysfunction in motor neurons[J]. Int J Dev Neurosci, 2006, 24(2-3):103-111. DOI:10.1016/j.ijdevneu.2005.11.013. PMID:16406469.
[26]
Egan MJ, Tan K, Reck-Peterson SL. Lis1 is an initiation factor for dynein-driven organelle transport[J]. J Cell Biol, 2012, 197(7):971-982. DOI:10.1083/jcb.201112101. PMID:22711696.
[27]
Clark GD. Platelet-activating factor acetylhydrolase and brain development[J]. Enzymes, 2015, 38:37-42. DOI:10.1016/bs.enz.2015.09.009. PMID:26612645.
[28]
Aiken J, Moore JK, Bates EA. TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migration and impair dynein activity[J]. Hum Mol Genet, 2019, 28(8):1227-1243. DOI:10.1093/hmg/ddy416. PMID:30517687.
[29]
Gonçalves JC, Dantas TJ, Vallee RB. Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation[J]. J Cell Biol, 2019, 218(3):808-819. DOI:10.1083/jcb.201806112. PMID:30674581.
[30]
Heinrich G, Lum T. Fish neurotrophins and Trk receptors[J]. Int J Dev Neurosci, 2000, 18(1):1-27. DOI:10.1016/s0736-5748(99)00071-4. PMID:10708902.
[31]
Hoang HT, Schlager MA, Carter AP, et al. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes[J]. Proc Natl Acad Sci U S A, 2017, 114(9):E1597-E1606. DOI:10.1073/pnas.1620141114. PMID:28196890.
[32]
Lanshakov DA, Sukhareva EV, Kalinina TS, et al. Dexamethasone-induced acute excitotoxic cell death in the developing brain[J]. Neurobiol Dis, 2016, 91:1-9. DOI:10.1016/j.nbd.2016.02.009. PMID:26873551.
[33]
Sukhareva EV, Dygalo NN, Kalinina TS. Influence of dexamethasone on the expression of immediate early genes c-fos and c-jun in different regions of the neonatal brain[J]. Mol Biol (Mosk), 2016, 50(2):266-271. DOI:10.7868/S0026898416020257. PMID:27239846.