Gene editing for the treatment of primary immunodeficiency disease
LIU Shan, FANG Shu-Yu, AN Yun-Fei
Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
Abstract Gene editing is an advanced technique based on artificial nucleases and can precisely modify genome sequences. It has shown great application prospects in the field of medicine and has provided a new precision therapy for diseases. Primary immunodeficiency disease is a group of diseases caused by single gene mutation and characterized by recurrent and refractory infections, with an extremely high mortality rate. The application of gene editing has brought hope for curing these diseases. This article reviews the development of gene editing technology and briefly introduces the research and application of gene editing technology in primary immunodeficiency disease.
Ho BX, Loh SJH, Chan WK, et al. In vivo genome editing as a therapeutic approach[J]. Int J Mol Sci, 2018, 19(9):2721. DOI:10.3390/ijms19092721. PMID:30213032. PMCID:PMC6163904.
[2]
Rui Y, Wilson DR, Green JJ. Non-viral delivery to enable genome editing[J]. Trends Biotechnol, 2019, 37(3):281-293. DOI:10.1016/j.tibtech.2018.08.010. PMID:30278987. PMCID:PMC6378131.
[3]
Saha SK, Saikot FK, Rahman MS, et al. Programmable molecular scissors:applications of a new tool for genome editing in biotech[J]. Mol Ther Nucleic Acids, 2019, 14:212-238. DOI:10.1016/j.omtn.2018.11.016. PMID:30641475. PMCID:PMC6330515.
[4]
Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering[J]. J Mol Biol, 2016, 428(5 Pt B):963-989. DOI:10.1016/j.jmb.2015.10.014. PMID:26506267. PMCID:PMC4798875.
[5]
Li T, Huang S, Jiang WZ, et al. TAL nucleases (TALNs):hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain[J]. Nucleic Acids Res, 2011, 39(1):359-372. DOI:10.1093/nar/gkq704. PMID:20699274. PMCID:PMC3017587.
[6]
Lamb BM, Mercer AC, Barbas CF. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases[J]. Nucleic Acids Res, 2013, 41(21):9779-9785. DOI:10.1093/nar/gkt754. PMID:23980031. PMCID:PMC3834825.
[7]
Ding YD, Li H, Chen LL, et al. Recent advances in genome editing using CRISPR/Cas9[J]. Front Plant Sci, 2016, 7:703. DOI:10.3389/fpls.2016.00703. PMID:27252719. PMCID:PMC4877526.
[8]
Jiang FG, Doudna JA. CRISPR-Cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46:505-529. DOI:10.1146/annurev-biophys-062215-010822. PMID:28375731.
[9]
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system:a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232:116636. DOI:10.1016/j.lfs.2019.116636. PMID:31295471.
Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. DOI:10.1038/nbt.2808. PMID:24463574. PMCID:PMC3988262.
[12]
Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal structure of the minimal Cas9 from campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Mol Cell, 2017, 65(6):1109-1121.e3. DOI:10.1016/j.molcel.2017.02.007. PMID:28306506.
[13]
Truong DJ, Kühner K, Kühn R, et al. Development of an intein-mediated split-Cas9 system for gene therapy[J]. Nucleic Acids Res, 2015, 43(13):6450-6458. DOI:10.1093/nar/gkv601. PMID:26082496. PMCID:PMC4513872.
[14]
Landrum MJ, Lee JM, Benson M, et al. ClinVar:public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Res, 2016, 44(D1):D862-D868. DOI:10.1093/nar/gkv1222. PMID:26582918. PMCID:PMC4702865.
[15]
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. DOI:10.1038/nature17946. PMID:27096365. PMCID:PMC4873371.
[16]
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. DOI:10.1038/nature24644. PMID:29160308. PMCID:PMC5726555.
[17]
Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nat Biotechnol, 2020, 38(7):883-891. DOI:10.1038/s41587-020-0453-z. PMID:32433547. PMCID:PMC7357821.
[18]
Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437):289-292. DOI:10.1126/science.aav9973. PMID:30819928. PMCID:PMC7301308.
[19]
Zhao DD, Li J, Li SW, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol, 2021, 39(1):35-40. DOI:10.1038/s41587-020-0592-2. PMID:32690970.
[20]
Zhang XH, Zhu BY, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7):856-860. DOI:10.1038/s41587-020-0527-y. PMID:32483363.
[21]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. DOI:10.1038/s41586-019-1711-4. PMID:31634902. PMCID:PMC6907074.
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol, 2020, 38(7):824-844. DOI:10.1038/s41587-020-0561-9. PMID:32572269.
Booth C, Romano R, Roncarolo MG, et al. Gene therapy for primary immunodeficiency[J]. Hum Mol Genet, 2019, 28(R1):R15-R23. DOI:10.1093/hmg/ddz170. PMID:31297531.
[26]
Bousso P, Wahn V, Douagi I, et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor[J]. Proc Natl Acad Sci U S A, 2000, 97(1):274-278. DOI:10.1073/pnas.97.1.274. PMID:10618408. PMCID:PMC26653.
[27]
Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells[J]. Nature, 2014, 510(7504):235-240. DOI:10.1038/nature13420. PMID:24870228. PMCID:PMC4082311.
Schiroli G, Ferrari S, Conway A, et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1[J]. Sci Transl Med, 2017, 9(411):eaan0820. DOI:10.1126/scitranslmed.aan0820. PMID:29021165.
[30]
Pavel-Dinu M, Wiebking V, Dejene BT, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells[J]. Nat Commun, 2019, 10(1):1634. DOI:10.1038/s41467-019-09614-y. PMID:30967552. PMCID:PMC6456568.
[31]
De Ravin SS, Li LH, Wu XL, et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease[J]. Sci Transl Med, 2017, 9(372):eaah3480. DOI:10.1126/scitranslmed.aah3480. PMID:28077679.
Wrona D, Pastukhov O, Pritchard RS, et al. CRISPR-directed therapeutic correction at the NCF1 locus is challenged by frequent incidence of chromosomal deletions[J]. Mol Ther Methods Clin Dev, 2020, 17:936-943. DOI:10.1016/j.omtm.2020.04.015. PMID:32420407. PMCID:PMC7217921.
[36]
Khan SH. Genome-editing technologies:concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application[J]. Mol Ther Nucleic Acids, 2019, 16:326-334. DOI:10.1016/j.omtn.2019.02.027. PMID:30965277. PMCID:PMC6454098.
[37]
Hubbard N, Hagin D, Sommer K, et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome[J]. Blood, 2016, 127(21):2513-2522. DOI:10.1182/blood-2015-11-683235. PMID:26903548.
[38]
Kuo CY, Long JD, Campo-Fernandez B, et al. Site-specific gene editing of human hematopoietic stem cells for X-linked Hyper-IgM syndrome[J]. Cell Rep, 2018, 23(9):2606-2616. DOI:10.1016/j.celrep.2018.04.103. PMID:29847792. PMCID:PMC6181643.
[39]
Laskowski TJ, Van Caeneghem Y, Pourebrahim R, et al. Gene correction of iPSCs from a Wiskott-Aldrich syndrome patient normalizes the lymphoid developmental and functional defects[J]. Stem Cell Reports, 2016, 7(2):139-148. DOI:10.1016/j.stemcr.2016.06.003. PMID:27396937. PMCID:PMC4982969.
[40]
Rai R, Romito M, Rivers E, et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich syndrome[J]. Nat Commun, 2020, 11(1):4034. DOI:10.1038/s41467-020-17626-2. PMID:32788576. PMCID:PMC7423939.
[41]
Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans[J]. Nat Med, 2019, 25(2):249-254. DOI:10.1038/s41591-018-0326-x. PMID:30692695. PMCID:PMC7199589.
[42]
Lomova A, Clark DN, Campo-Fernandez B, et al. Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair[J]. Stem Cells, 2019, 37(2):284-294. DOI:10.1002/stem.2935. PMID:30372555. PMCID:PMC6368869.
[43]
Canny MD, Moatti N, Wan LCK, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency[J]. Nat Biotechnol, 2018, 36(1):95-102. DOI:10.1038/nbt.4021. PMID:29176614. PMCID:PMC5762392.