Clinical effect of different maintenance doses of caffeine citrate in the treatment of preterm infants requiring assisted ventilation: a pilot multicenter study
YANG Yang, LU Ke-Yu, CHENG Rui, ZHOU Qin, FANG Guang-Dong, LI Hong, SHAO Jie, WANG Huai-Yan, LI Zheng-Ying, LIU Song-Lin, LI Zhen-Guang, CAI Jin-Lan, XUE Mei, CHEN Xiao-Qing, PAN Zhao-Jun, GAO Yan, HUANG Li, LI Hai-Ying, SONG Lei, WANG San-Nan, SHU Gui-Hua, WU Wei, YU Meng-Zhu, XU Zhun, LI Hong-Xin, XU Yan, BAO Zhi-Dan, WU Xin-Ping, YE Li, DONG Xue-Ping, YIN Qi-Gai, YIN Xiao-Ping, ZHOU Jin-Jun
Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing 210000, China)
Abstract Objective To explore the optimal maintenance dose of caffeine citrate for preterm infants requiring assisted ventilation and caffeine citrate treatment. Methods A retrospective analysis was performed on the medical data of 566 preterm infants (gestational age ≤34 weeks) who were treated and required assisted ventilation and caffeine citrate treatment in the neonatal intensive care unit of 30 tertiary hospitals in Jiangsu Province of China between January 1 and December 31, 2019. The 405 preterm infants receiving high-dose (10 mg/kg per day) caffeine citrate after a loading dose of 20 mg/kg within 24 hours after birth were enrolled as the high-dose group. The 161 preterm infants receiving low-dose (5 mg/kg per day) caffeine citrate were enrolled as the low-dose group. Results Compared with the low-dose group, the high-dose group had significant reductions in the need for high-concentration oxygen during assisted ventilation (P=0.044), the duration of oxygen inhalation after weaning from noninvasive ventilation (P<0.01), total oxygen inhalation time during hospitalization (P<0.01), the proportion of preterm infants requiring noninvasive ventilation again (P<0.01), the rate of use of pulmonary surfactant and budesonide (P<0.05), and the incidence rates of apnea and bronchopulmonary dysplasia (P<0.01), but the high-dose group had a significantly increased incidence rate of feeding intolerance (P=0.032). There were no significant differences between the two groups in the body weight change, the incidence rates of retinopathy of prematurity, intraventricular hemorrhage or necrotizing enterocolitis, the mortality rate, and the duration of caffeine use (P>0.05). Conclusions This pilot multicenter study shows that the high maintenance dose (10 mg/kg per day) is generally beneficial to preterm infants in China and does not increase the incidence rate of common adverse reactions. For the risk of feeding intolerance, further research is needed to eliminate the interference of confounding factors as far as possible.
YANG Yang,LU Ke-Yu,CHENG Rui et al. Clinical effect of different maintenance doses of caffeine citrate in the treatment of preterm infants requiring assisted ventilation: a pilot multicenter study[J]. CJCP, 2022, 24(3): 240-248.
YANG Yang,LU Ke-Yu,CHENG Rui et al. Clinical effect of different maintenance doses of caffeine citrate in the treatment of preterm infants requiring assisted ventilation: a pilot multicenter study[J]. CJCP, 2022, 24(3): 240-248.
Donda K, Vijayakanthi N, Dapaah-Siakwan F, et al. Trends in epidemiology and outcomes of respiratory distress syndrome in the United States[J]. Pediatr Pulmonol, 2019, 54(4): 405-414. PMID: 30663263. DOI: 10.1002/ppul.24241.
Fauroux B, Hasco?t JM, Jarreau PH, et al. Risk factors for bronchiolitis hospitalization in infants: a French nationwide retrospective cohort study over four consecutive seasons (2009-2013)[J]. PLoS One, 2020, 15(3): e0229766. PMID: 32142528. PMCID: PMC7059917. DOI: 10.1371/journal.pone.0229766.
Nies?uchowska-Hoxha A, Cnota W, Czuba B, et al. A retrospective study on the risk of respiratory distress syndrome in singleton pregnancies with preterm premature rupture of membranes between 24+0 and 36+6 weeks, using regression analysis for various factors[J]. Biomed Res Int, 2018, 2018: 7162478. PMID: 30402491. PMCID: PMC6193337. DOI: 10.1155/2018/7162478.
Wielenga JM, van den Hoogen A, van Zanten HA, et al. Protocolized versus non-protocolized weaning for reducing the duration of invasive mechanical ventilation in newborn infants[J]. Cochrane Database Syst Rev, 2016, 3: CD011106. PMID: 26998745. DOI: 10.1002/14651858.CD011106.pub2.
Steer P, Flenady V, Shearman A, et al. High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial[J]. Arch Dis Child Fetal Neonatal Ed, 2004, 89(6): F499-F503. PMID: 15499141. PMCID: PMC1721801. DOI: 10.1136/adc.2002.023432.
Aranda JV, Gorman W, Bergsteinsson H, et al. Efficacy of caffeine in treatment of apnea in the low-birth-weight infant[J]. J Pediatr, 1977, 90(3): 467-472. PMID: 14241. DOI: 10.1016/s0022-3476(77)80718-x.
Sanchez-Solis M, Garcia-Marcos PW, Agüera-Arenas J, et al. Impact of early caffeine therapy in preterm newborns on infant lung function[J]. Pediatr Pulmonol, 2020, 55(1): 102-107. PMID: 31587528. DOI: 10.1002/ppul.24540.
Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome—2019 update[J]. Neonatology, 2019, 115(4): 432-450. PMID: 30974433. PMCID: PMC6604659. DOI: 10.1159/000499361.
International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited[J]. Arch Ophthalmol, 2005, 123(7): 991-999. PMID: 16009843. DOI: 10.1001/archopht.123.7.991.
Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm[J]. J Pediatr, 1978, 92(4): 529-534. PMID: 305471. DOI: 10.1016/s0022-3476(78)80282-0.
13 Volpe JJ. Neurology of the newborn[M]. 5th ed. Philadelphia: Saunders/Elsevier, 2008: 541.
Schmidt B, Anderson PJ, Doyle LW, et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity[J]. JAMA, 2012, 307(3): 275-282. PMID: 22253394. DOI: 10.1001/jama.2011.2024.
He X, Qiu JC, Lu KY, et al. Therapy for apnoea of prematurity: a retrospective study on effects of standard dose and genetic variability on clinical response to caffeine citrate in Chinese preterm infants[J]. Adv Ther, 2021, 38(1):607-626. PMID: 33180318. DOI: 10.1007/s12325-020-01544-2.
Turmen T, Davis J, Aranda JV. Relationship of dose and plasma concentrations of caffeine and ventilation in neonatal apnea[J]. Semin Perinatol, 1981, 5(4): 326-331. PMID: 7302607.
Wan LJ, Huang L, Chen PY. Caffeine citrate maintenance doses effect on extubation and apnea postventilation in preterm infants[J]. Pediatr Pulmonol, 2020, 55(10): 2635-2640. PMID: 32639634. DOI: 10.1002/ppul.24948.
Kou C, Han D, Li ZN, et al. Influence of prevention of caffeine citrate on cytokine profile and bronchopulmonary dysplasia in preterm infants with apnea[J]. Minerva Pediatr, 2020, 72(2): 95-100. PMID: 30961342. DOI: 10.23736/S0026-4946.19.05428-8.
Mohammed S, Nour I, Shabaan AE, et al. High versus low-dose caffeine for apnea of prematurity: a randomized controlled trial[J]. Eur J Pediatr, 2015, 174(7): 949-956. PMID: 25644724. DOI: 10.1007/s00431-015-2494-8.
Gray PH, Flenady VJ, Charles BG, et al. Caffeine citrate for very preterm infants: effects on development, temperament and behaviour[J]. J Paediatr Child Health, 2011, 47(4): 167-172. PMID: 21244548. DOI: 10.1111/j.1440-1754.2010.01943.x.
Chen J, Jin L, Chen X. Efficacy and safety of different maintenance doses of caffeine citrate for treatment of apnea in premature infants: a systematic review and meta-analysis[J]. Biomed Res Int, 2018, 2018: 9061234. PMID: 30671477. PMCID: PMC6323495. DOI: 10.1155/2018/9061234.
Kraaijenga JV, Hutten GJ, de Jongh FH, et al. The effect of caffeine on diaphragmatic activity and tidal volume in preterm infants[J]. J Pediatr, 2015, 167(1): 70-75. PMID: 25982138. DOI: 10.1016/j.jpeds.2015.04.040.
Doyle J, Davidson D, Katz S, et al. Apnea of prematurity and caffeine pharmacokinetics: potential impact on hospital discharge[J]. J Perinatol, 2016, 36(2): 141-144. PMID: 26562367. DOI: 10.1038/jp.2015.167.
Le Guennec JC, Billon B, Paré C. Maturational changes of caffeine concentrations and disposition in infancy during maintenance therapy for apnea of prematurity: influence of gestational age, hepatic disease, and breast-feeding[J]. Pediatrics, 1985, 76(5): 834-840. PMID: 4058995.
Vliegenthart R, Miedema M, Hutten GJ, et al. High versus standard dose caffeine for apnoea: a systematic review[J]. Arch Dis Child Fetal Neonatal Ed, 2018, 103(6):F523-F529. PMID: 29437799. DOI: 10.1136/archdischild-2017-313556.
Cox C, Hashem NG, Tebbs J, et al. Evaluation of caffeine and the development of necrotizing enterocolitis[J]. J Neonatal Perinatal Med, 2015, 8(4): 339-347. PMID: 26757002. DOI: 10.3233/NPM-15814059.
Taha D, Kirkby S, Nawab U, et al. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants[J]. J Matern Fetal Neonatal Med, 2014, 27(16): 1698-1702. PMID: 24479608. DOI: 10.3109/14767058.2014.885941.
SHEN Wei, ZHENG Zhi, LIN Xin-Zhu, WU Fan, TIAN Qian-Xin, CUI Qi-Liang, YUAN Yuan, REN Ling, MAO Jian, SHI Bi-Zhen, WANG Yu-Mei, LIU Ling, ZHANG Jing-Hui, CHANG Yan-Mei, TONG Xiao-Mei, ZHU Yan, ZHANG Rong, YE Xiu-Zhen, ZOU Jing-Jing, LI Huai-Yu, ZHAO Bao-Yin, QIU Yin-Ping, LIU Shu-Hua, MA Li, XU Ying, CHENG Rui, ZHOU Wen-Li, WU Hui, LIU Zhi-Yong, CHEN Dong-Mei, GAO Jin-Zhi, LIU Jing, CHEN Ling, LI Cong, YANG Chun-Yan, XU Ping, ZHANG Ya-Yu, HU Si-Le, MEI Hua, YANG Zu-Ming, FENG Zong-Tai, WANG San-Nan, MENG Er-Yan, SHANG Li-Hong, XU Fa-Lin, OU Shao-Ping, JU Rong. Incidence of extrauterine growth retardation and its risk factors in very preterm infants during hospitalization: a multicenter prospective study[J]. CJCP, 2022, 24(2): 132-140.