Recent research on gene polymorphisms related to caffeine therapy in preterm infants with apnea of prematurity

XIE Jiang-Biao, LIN Xin-Zhu

Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (7) : 832-837.

PDF(501 KB)
PDF(501 KB)
Chinese Journal of Contemporary Pediatrics ›› 2022, Vol. 24 ›› Issue (7) : 832-837. DOI: 10.7499/j.issn.1008-8830.2203134
REVIEW

Recent research on gene polymorphisms related to caffeine therapy in preterm infants with apnea of prematurity

  • XIE Jiang-Biao, LIN Xin-Zhu
Author information +
History +

Abstract

Apnea of prematurity (AOP) is one of the common diseases in preterm infants. The main cause of AOP is immature development of the respiratory control center. If AOP is not treated timely and effectively, it will lead to respiratory failure, hypoxic brain injury, and even death in severe cases. Caffeine is the first choice for the treatment of AOP, but its effectiveness varies in preterm infants. With the deepening of AOP research, more and more genetic factors have been confirmed to play important roles in the pathogenesis and treatment of AOP; in particular, the influence of single nucleotide polymorphism on the efficacy of caffeine has become a research hotspot in recent years. This article reviews the gene polymorphisms that affect the efficacy of caffeine, in order to provide a reference for individualized caffeine therapy. Citation:

Key words

Apnea of prematurity / Caffeine / Gene polymorphism / Preterm infant

Cite this article

Download Citations
XIE Jiang-Biao, LIN Xin-Zhu. Recent research on gene polymorphisms related to caffeine therapy in preterm infants with apnea of prematurity[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(7): 832-837 https://doi.org/10.7499/j.issn.1008-8830.2203134

References

1 Eichenwald EC; Committee on Fetus and Newborn, American Academy of Pediatrics. Apnea of prematurity[J]. Pediatrics, 2016, 137(1): e20153757. PMID: 26628729. DOI: 10.1542/peds.2015-3757.
2 Erickson G, Dobson NR, Hunt CE. Immature control of breathing and apnea of prematurity: the known and unknown[J]. J Perinatol, 2021, 41(9): 2111-2123. PMID: 33712716. PMCID: PMC7952819. DOI: 10.1038/s41372-021-01010-z.
3 Pergolizzi J, Kraus A, Magnusson P, et al. Treating apnea of prematurity[J]. Cureus, 2022, 14(1): e21783. PMID: 35251853. PMCID: PMC8890764. DOI: 10.7759/cureus.21783.
4 杜立中. 早产儿呼吸暂停的药物治疗[J]. 中国实用儿科杂志, 2015, 30(2): 88-92. DOI: 10.7504/ek2015020603.
5 Tamim H, Khogali M, Beydoun H, et al. Consanguinity and apnea of prematurity[J]. Am J Epidemiol, 2003, 158(10): 942-946. PMID: 14607801. DOI: 10.1093/aje/kwg226.
6 Bloch-Salisbury E, Hall MH, Sharma P, et al. Heritability of apnea of prematurity: a retrospective twin study[J]. Pediatrics, 2010, 126(4): e779-e787. PMID: 20837586. DOI: 10.1542/peds.2010-0084.
7 Kumral A, Tuzun F, Yesilirmak DC, et al. Genetic basis of apnoea of prematurity and caffeine treatment response: role of adenosine receptor polymorphisms: genetic basis of apnoea of prematurity[J]. Acta Paediatr, 2012, 101(7): e299-e303. PMID: 22462821. DOI: 10.1111/j.1651-2227.2012.02664.x.
8 Alhersh E, Abushanab D, Al-Shaibi S, et al. Caffeine for the treatment of apnea in the neonatal intensive care unit: a systematic overview of meta-analyses[J]. Paediatr Drugs, 2020, 22(4): 399-408. PMID: 32488731. PMCID: PMC7266675. DOI: 10.1007/s40272-020-00404-4.
9 Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity[J]. N Engl J Med, 2006, 354(20): 2112-2121. PMID: 16707748. DOI: 10.1056/NEJMoa054065.
10 Laouafa S, Iturri P, Arias-Reyes C, et al. Erythropoietin and caffeine exert similar protective impact against neonatal intermittent hypoxia: apnea of prematurity and sex dimorphism[J]. Exp Neurol, 2019, 320: 112985. PMID: 31254520. DOI: 10.1016/j.expneurol.2019.112985.
11 Williamson M, Poorun R, Hartley C. Apnoea of prematurity and neurodevelopmental outcomes: current understanding and future prospects for research[J]. Front Pediatr, 2021, 9: 755677. PMID: 34760852. PMCID: PMC8573333. DOI: 10.3389/fped.2021.755677.
12 Rosen C, Taran C, Hanna M, et al. Caffeine citrate for apnea of prematurity-one dose does not fit all a prospective study[J]. J Perinatol, 2021, 41(9): 2292-2297. PMID: 34290376. DOI: 10.1038/s41372-021-01172-w.
13 张霄, 张海涛, 吕勇, 等. 不同维持剂量枸橼酸咖啡因治疗极低出生体重早产儿呼吸暂停的前瞻性随机对照研究[J]. 中国当代儿科杂志, 2019, 21(6): 558-561. PMID: 31208509. PMCID: PMC7389581. DOI: 10.7499/j.issn.1008-8830.2019.06.011.
14 Mokhtar WA, Fawzy A, Allam RM, et al. Association between adenosine receptor gene polymorphism and response to caffeine citrate treatment in apnea of prematurity; an Egyptian single-center study[J]. Egypt Pediatr Assoc Gaz, 2018, 66(4): 115-120. DOI: 10.1016/j.epag.2018.09.001.
15 van Dam RM, Hu FB, Willett WC. Coffee, caffeine, and health[J]. N Engl J Med, 2020, 383(4): 369-378. PMID: 32706535. DOI: 10.1056/NEJMra1816604.
16 Nehlig A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption[J]. Pharmacol Rev, 2018, 70(2): 384-411. PMID: 29514871. DOI: 10.1124/pr.117.014407.
17 Deb PK, Deka S, Borah P, et al. Medicinal chemistry and therapeutic potential of agonists, antagonists and allosteric modulators of A1 adenosine receptor: current status and perspectives[J]. Curr Pharm Des, 2019, 25(25): 2697-2715. PMID: 31333094. DOI: 10.2174/1381612825666190716100509.
18 Abu-Shaweesh JM, Martin RJ. Caffeine use in the neonatal intensive care unit[J]. Semin Fetal Neonatal Med, 2017, 22(5): 342-347. PMID: 28801176. DOI: 10.1016/j.siny.2017.07.011.
19 He X, Qiu JC, Lu KY, et al. Therapy for apnoea of prematurity: a retrospective study on effects of standard dose and genetic variability on clinical response to caffeine citrate in Chinese preterm infants[J]. Adv Ther, 2021, 38(1): 607-626. PMID: 33180318. DOI: 10.1007/s12325-020-01544-2.
20 Al-Attraqchi OHA, Attimarad M, Venugopala KN, et al. Adenosine A2A receptor as a potential drug target—current status and future perspectives[J]. Curr Pharm Des, 2019, 25(25): 2716-2740. PMID: 31333093. DOI: 10.2174/1381612825666190716113444.
21 Dobson NR, Hunt CE. Caffeine: an evidence-based success story in VLBW pharmacotherapy[J]. Pediatr Res, 2018, 84(3): 333-340. PMID: 29983414. DOI: 10.1038/s41390-018-0089-6.
22 Fulton JL, Dinas PC, Carrillo AE, et al. Impact of genetic variability on physiological responses to caffeine in humans: a systematic review[J]. Nutrients, 2018, 10(10): 1373. PMID: 30257492. PMCID: PMC6212886. DOI: 10.3390/nu10101373.
23 Erblang M, Drogou C, Gomez-Merino D, et al. The impact of genetic variations in ADORA2A in the association between caffeine consumption and sleep[J]. Genes (Basel), 2019, 10(12): 1021. PMID: 31817803. PMCID: PMC6947650. DOI: 10.3390/genes10121021.
24 Childs E, Hohoff C, Deckert J, et al. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety[J]. Neuropsychopharmacology, 2008, 33(12): 2791-2800. PMID: 18305461. PMCID: PMC2745641. DOI: 10.1038/npp.2008.17.
25 Barresi E, Martini C, Da Settimo F, et al. Allosterism vs. Orthosterism: recent findings and future perspectives on A2B AR physio-pathological implications[J]. Front Pharmacol, 2021, 12: 652121. PMID: 33841166. PMCID: PMC8024542. DOI: 10.3389/fphar.2021.652121.
26 Jacobson KA, Merighi S, Varani K, et al. A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy[J]. Med Res Rev, 2018, 38(4): 1031-1072. PMID: 28682469. PMCID: PMC5756520. DOI: 10.1002/med.21456.
27 Effendi WI, Nagano T, Kobayashi K, et al. Focusing on adenosine receptors as a potential targeted therapy in human diseases[J]. Cells, 2020, 9(3): 785. PMID: 32213945. PMCID: PMC7140859. DOI: 10.3390/cells9030785.
28 Kumar VHS, Lipshultz SE. Caffeine and clinical outcomes in premature neonates[J]. Children (Basel), 2019, 6(11): 118. PMID: 31653108. PMCID: PMC6915633. DOI: 10.3390/children6110118.
29 Banks NF, Tomko PM, Colquhoun RJ, et al. Genetic polymorphisms in ADORA2A and CYP1A2 influence caffeine's effect on postprandial glycaemia[J]. Sci Rep, 2019, 9(1): 10532. PMID: 31324842. PMCID: PMC6642114. DOI: 10.1038/s41598-019-46931-0.
30 Rodenburg EM, Eijgelsheim M, Geleijnse JM, et al. CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking[J]. Am J Clin Nutr, 2012, 96(1): 182-187. PMID: 22648710. DOI: 10.3945/ajcn.111.027102.
31 Gao XB, Zheng Y, Yang F, et al. Developmental population pharmacokinetics of caffeine in Chinese premature infants with apnoea of prematurity: a post-marketing study to support paediatric labelling in China[J]. Br J Clin Pharmacol, 2021, 87(3): 1155-1164. PMID: 32687613. DOI: 10.1111/bcp.14483.
32 Song G, Sun X, Hines RN, et al. Determination of human hepatic CYP2C8 and CYP1A2 age-dependent expression to support human health risk assessment for early ages[J]. Drug Metab Dispos, 2017, 45(5): 468-475. PMID: 28228413. DOI: 10.1124/dmd.116.074583.
33 Coffee and Caffeine Genetics Consortium, Cornelis MC, Byrne EM, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption[J]. Mol Psychiatry, 2015, 20(5): 647-656. PMID: 25288136. PMCID: PMC4388784. DOI: 10.1038/mp.2014.107.
34 Ishii M, Ishii Y, Nakayama T, et al. 13C-caffeine breath test identifies single nucleotide polymorphisms associated with caffeine metabolism[J]. Drug Metab Pharmacokinet, 2020, 35(3): 321-328. PMID: 32303460. DOI: 10.1016/j.dmpk.2020.03.003.
35 Guo HL, Long JY, Hu YH, et al. Caffeine therapy for apnea of prematurity: role of the circadian CLOCK gene polymorphism[J]. Front Pharmacol, 2021, 12: 724145. PMID: 35145399. PMCID: PMC8822171. DOI: 10.3389/fphar.2021.724145.
36 Shivanna B, Chu C, Moorthy B. The aryl hydrocarbon receptor (AHR): a novel therapeutic target for pulmonary diseases?[J]. Int J Mol Sci, 2022, 23(3): 1516. PMID: 35163440. PMCID: PMC8836075. DOI: 10.3390/ijms23031516.
37 Gracia E, Farré D, Cortés A, et al. The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors[J]. FASEB J, 2013, 27(3): 1048-1061. PMID: 23193172. DOI: 10.1096/fj.12-212621.
38 Mazzotti DR, Guindalini C, Pellegrino R, et al. Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample[J]. Sleep, 2011, 34(3): 399-402. PMID: 21359089. PMCID: PMC3041717. DOI: 10.1093/sleep/34.3.399.
39 Schuch JB, Genro JP, Bastos CR, et al. The role of CLOCK gene in psychiatric disorders: evidence from human and animal research[J]. Am J Med Genet B Neuropsychiatr Genet, 2018, 177(2): 181-198. PMID: 28902457. DOI: 10.1002/ajmg.b.32599.
40 Ozburn AR, Purohit K, Parekh PK, et al. Functional implications of the CLOCK 3111T/C single-nucleotide polymorphism[J]. Front Psychiatry, 2016, 7: 67. PMID: 27148095. PMCID: PMC4838618. DOI: 10.3389/fpsyt.2016.00067.
41 Li Y, Cao Z, Wu S, et al. Association between the CLOCK gene polymorphism and depressive symptom mediated by sleep quality among non-clinical Chinese Han population[J]. J Affect Disord, 2022, 298(Pt A): 217-223. PMID: 34715159. DOI: 10.1016/j.jad.2021.10.070.
42 Zhang SL, Lahens NF, Yue Z, et al. A circadian clock regulates efflux by the blood-brain barrier in mice and human cells[J]. Nat Commun, 2021, 12(1): 617. PMID: 33504784. PMCID: PMC7841146. DOI: 10.1038/s41467-020-20795-9.
43 Jagannath A, Varga N, Dallmann R, et al. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice[J]. Nat Commun, 2021, 12(1): 2113. PMID: 33837202. PMCID: PMC8035342. DOI: 10.1038/s41467-021-22179-z.
44 Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling[J]. Eur J Neurosci, 2020, 51(1): 379-395. PMID: 30706546. DOI: 10.1111/ejn.14361.
PDF(501 KB)

Accesses

Citation

Detail

Sections
Recommended

/