Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates
CUI Cheng, CHEN Fei-Long, LI Lu-Quan
Department of Neonatology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
Abstract Necrotizing enterocolitis (NEC), with the main manifestations of bloody stool, abdominal distension, and vomiting, is one of the leading causes of death in neonates, and early identification and diagnosis are crucial for the prognosis of NEC. The emergence and development of machine learning has provided the potential for early, rapid, and accurate identification of this disease. This article summarizes the algorithms of machine learning recently used in NEC, analyzes the high-risk predictive factors revealed by these algorithms, evaluates the ability and characteristics of machine learning in the etiology, definition, and diagnosis of NEC, and discusses the challenges and prospects for the future application of machine learning in NEC.
CUI Cheng,CHEN Fei-Long,LI Lu-Quan. Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates[J]. CJCP, 2023, 25(7): 767-773.
CUI Cheng,CHEN Fei-Long,LI Lu-Quan. Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates[J]. CJCP, 2023, 25(7): 767-773.
1 Kochanek KD, Xu MAJ, Arias E. Mortality in the United States, 2019[EB/OL]. (2020-12-22)[2023-02-19]. https://www.cdc.gov/nchs/products/databriefs/db395.htm.
10 van Druten J, Sharif MS, Chan SS, et al. A deep learning based suggested model to detect necrotising enterocolitis in abdominal radiography images[C]//2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE). Piscataway, NJ, USA: IEEE, 2019: 118-123.
Hyun S, Kaewprag P, Cooper C, et al. Exploration of critical care data by using unsupervised machine learning[J]. Comput Methods Programs Biomed, 2020, 194: 105507. PMID: 32403049. DOI: 10.1016/j.cmpb.2020.105507.
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods[J]. AJR Am J Roentgenol, 2019, 212(1): 38-43. PMID: 30332290. DOI: 10.2214/AJR.18.20224.
17 Senaviratna NAMR, A Cooray TMJ. Diagnosing multicollinearity of logistic regression model[J]. Asian J Probab Stat, 2019, 5(2): 1-9. DOI: 10.9734/ajpas/2019/v5i230132.
18 Lavery MR, Acharya P, Sivo SA, et al. Number of predictors and multicollinearity: what are their effects on error and bias in regression?[J]. Commun Stat Simul Comput, 2019, 48(1): 27-38. DOI: 10.1080/03610918.2017.1371750.
19 Boateng EY, Abaye DA. A review of the logistic regression model with emphasis on medical research[J]. J Data Anal Inf Process, 2019, 7(4): 190-207. DOI: 10.4236/jdaip.2019.74012.
20 Jijo BT, Abdulazeez AM. Classification based on decision tree algorithm for machine learning[J]. J Appl Sci Technol Trends, 2021, 2(1): 20-28. DOI: 10.38094/jastt20165.
21 Patel HH, Prajapati P. Study and analysis of decision tree based classification algorithms[J]. Int J Comput Sci Eng, 2018, 6(10): 74-78. DOI: 10.26438/ijcse/v6i10.7478.
Lueschow SR, Boly TJ, Jasper E, et al. A critical evaluation of current definitions of necrotizing enterocolitis[J]. Pediatr Res, 2022, 91(3): 590-597. PMID: 34021272. DOI: 10.1038/s41390-021-01570-y.
Battersby C, Longford N, Costeloe K, et al. Development of a gestational age-specific case definition for neonatal necrotizing enterocolitis[J]. JAMA Pediatr, 2017, 171(3): 256-263. PMID: 28046187. DOI: 10.1001/jamapediatrics.2016.3633.
25 Vermont Oxford Network. 2019 Manual of operations: part 2 data definitions & infant data forms[EB/OL]. (2019-02)[2023-02-19]. https://vtoxford.zendesk.com/hc/en-us/articles/360013115393-2019-Manual-of-Operations-Part-2-Release-23-2-PDF.
Caplan MS, Underwood MA, Modi N, et al. Necrotizing enterocolitis: using regulatory science and drug development to improve outcomes[J]. J Pediatr, 2019, 212: 208-215.e1. PMID: 31235383. DOI: 10.1016/j.jpeds.2019.05.032.
Gephart SM, Gordon PV, Penn AH, et al. Changing the paradigm of defining, detecting, and diagnosing NEC: perspectives on Bell's stages and biomarkers for NEC[J]. Semin Pediatr Surg, 2018, 27(1): 3-10. PMID: 29275814. DOI: 10.1053/j.sempedsurg.2017.11.002.
29 Ali J, Khan R, Ahmad N, et al. Random forests and decision trees[J]. Int J Comput Sci Issues, 2012, 9(5): 272-278.
Zhao Q, Shi Q, Zhu Q, et al. A mini-review of advances in intestinal flora and necrotizing enterocolitis[J]. Lett Appl Microbiol, 2022, 75(1): 2-9. PMID: 35138661. DOI: 10.1111/lam.13670.
Bode L. Human milk oligosaccharides in the prevention of necrotizing enterocolitis: a journey from in vitro and in vivo models to mother-infant cohort studies[J]. Front Pediatr, 2018, 6: 385. PMID: 30564564. PMCID: PMC6288465. DOI: 10.3389/fped.2018.00385.
Martin CR. Definitions of necrotizing enterocolitis: what are we defining and is machine learning the answer?[J]. Pediatr Res, 2022, 91(3): 488-489. PMID: 34465874. DOI: 10.1038/s41390-021-01687-0.
37 Salimi A, Ziaii M, Amiri A, et al. Using a feature subset selection method and support vector machine to address curse of dimensionality and redundancy in Hyperion hyperspectral data classification[J]. Egypt J Remote Sens Space Sci, 2018, 21(1): 27-36. DOI: 10.1016/j.ejrs.2017.02.003.
38 Bentéjac C, Cs?rg? A, Martínez-Mu?oz G. A comparative analysis of gradient boosting algorithms[J]. Artif Intell Rev, 2021, 54(3): 1937-1967. DOI: 10.1007/s10462-020-09896-5.
41 Gao W, Pei Y, Liang H, et al. Multimodal AI system for the rapid diagnosis and surgical prediction of necrotizing enterocolitis[J]. IEEE Access, 2021, 9: 51050-51064. DOI: 10.1109/ACCESS.2021.3069191.
42 Kukreja H, Bharath N, Siddesh CS, et al. An introduction to artificial neural network[J]. Int J Adv Res Innov Ideas Educ, 2016, 1(5): 27-30.
Irles C, González-Pérez G, Carrera Mui?os S, et al. Estimation of neonatal intestinal perforation associated with necrotizing enterocolitis by machine learning reveals new key factors[J]. Int J Environ Res Public Health, 2018, 15(11): 2509. PMID: 30423965. PMCID: PMC6267340. DOI: 10.3390/ijerph15112509.
48 Rai A. Explainable AI: from black box to glass box[J]. J Acad Mark Sci, 2020, 48(1): 137-141. DOI: 10.1007/s11747-019-00710-5.
49 Rigby MJ. Ethical dimensions of using artificial intelligence in health care[J]. AMA J Ethics, 2019, 21(2): E121-E124. DOI: 10.1001/amajethics.2019.121.
50 Cortez P, Embrechts MJ. Using sensitivity analysis and visualization techniques to open black box data mining models[J]. Inf Sci, 2013, 225: 1-17. DOI: 10.1016/j.ins.2012.10.039.
McCoy LG, Brenna CTA, Chen SS, et al. Believing in black boxes: machine learning for healthcare does not need explainability to be evidence-based[J]. J Clin Epidemiol, 2022, 142: 252-257. PMID: 34748907. DOI: 10.1016/j.jclinepi.2021.11.001.