Research research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal hypoxic-ischemic encephalopathy
LIU Yi-Xun, XIA Shi-Wen
Department of Neonatology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
Abstract Neonatal hypoxic-ischemic encephalopathy (HIE) remains one of the leading causes of death and long-term neurodevelopmental disorders in full-term neonates, and there is currently no curative treatment. Therapeutic hypothermia is now a standard therapy for HIE in the neonatal intensive care unit, but its safety and efficacy in remote areas remains unclear. Melatonin is an indole endocrine hormone mainly produced by the pineal gland and it has the ability to easily penetrate the blood-brain barrier. Through receptor and non-receptor mechanisms, melatonin exerts anti-oxidative and anti-inflammatory effects and participates in the regulation of organelle function and the inhibition of cell death. Melatonin is considered one of the most promising drugs for the treatment of HIE based on its reliable safety profile and clinical/preclinical results. This article reviews the recent research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal HIE.
LIU Yi-Xun,XIA Shi-Wen. Research research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal hypoxic-ischemic encephalopathy[J]. CJCP, 2023, 25(8): 864-869.
LIU Yi-Xun,XIA Shi-Wen. Research research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal hypoxic-ischemic encephalopathy[J]. CJCP, 2023, 25(8): 864-869.
Ahmad QM, Chishti AL, Waseem N. Role of melatonin in management of hypoxic ischaemic encephalopathy in newborns: a randomized control trial[J]. J Pak Med Assoc, 2018, 68(8): 1233-1237. PMID: 30108392.
Aridas JDS, Yawno T, Sutherland AE, et al. Systemic and transdermal melatonin administration prevents neuropathology in response to perinatal asphyxia in newborn lambs[J]. J Pineal Res, 2018, 64(4): e12479. PMID: 29464766. PMCID: PMC5947141. DOI: 10.1111/jpi.12479.
Martini S, Castellini L, Parladori R, et al. Free radicals and neonatal brain injury: from underlying pathophysiology to antioxidant treatment perspectives[J]. Antioxidants (Basel), 2021, 10(12): 2012. PMID: 34943115. PMCID: PMC8698308. DOI: 10.3390/antiox10122012.
Fulia F, Gitto E, Cuzzocrea S, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin[J]. J Pineal Res, 2001, 31(4): 343-349. PMID: 11703564. DOI: 10.1034/j.1600-079x.2001.310409.x.
Sinha B, Wu Q, Li W, et al. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor[J]. J Pineal Res, 2018, 64(1): e12443. PMID: 28796402. DOI: 10.1111/jpi.12443.
Martini S, Austin T, Aceti A, et al. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives[J]. Pediatr Res, 2020, 87(5): 823-833. PMID: 31655487. DOI: 10.1038/s41390-019-0639-6.
Berger HR, Morken TS, Vettukattil R, et al. No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat[J]. J Neurochem, 2016, 136(2): 339-350. PMID: 26526584. DOI: 10.1111/jnc.13420.
Carloni S, Riparini G, Buonocore G, et al. Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain[J]. J Pineal Res, 2017, 63(3): e12434. PMID: 28708259. DOI: 10.1111/jpi.12434.
Gao Q, Guo X, Cao Y, et al. Melatonin protects HT22 hippocampal cells from H2O2-induced injury by increasing beclin1 and Atg protein levels to activate autophagy[J]. Curr Pharm Des, 2021, 27(3): 446-454. PMID: 32838711. DOI: 10.2174/1381612826666200824105835.
Singh-Mallah G, Nair S, Sandberg M, et al. The role of mitochondrial and endoplasmic reticulum reactive oxygen species production in models of perinatal brain injury[J]. Antioxid Redox Signal, 2019, 31(9): 643-663. PMID: 30957515. PMCID: PMC6657303. DOI: 10.1089/ars.2019.7779.
Carloni S, Albertini MC, Galluzzi L, et al. Melatonin reduces endoplasmic reticulum stress and preserves sirtuin 1 expression in neuronal cells of newborn rats after hypoxia-ischemia[J]. J Pineal Res, 2014, 57(2): 192-199. PMID: 24980917. DOI: 10.1111/jpi.12156.
Robertson NJ, Faulkner S, Fleiss B, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model[J]. Brain, 2013, 136(Pt 1): 90-105. PMID: 23183236. DOI: 10.1093/brain/aws285.
Robertson NJ, Martinello K, Lingam I, et al. Melatonin as an adjunct to therapeutic hypothermia in a piglet model of neonatal encephalopathy: a translational study[J]. Neurobiol Dis, 2019, 121: 240-251. PMID: 30300675. DOI: 10.1016/j.nbd.2018.10.004.
Aridas JD, Yawno T, Sutherland AE, et al. Melatonin augments the neuroprotective effects of hypothermia in lambs following perinatal asphyxia[J]. J Pineal Res, 2021, 71(1): e12744. PMID: 34032315. DOI: 10.1111/jpi.12744.
Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study[J]. J Perinatol, 2015, 35(3): 186-191. PMID: 25393080. DOI: 10.1038/jp.2014.186.
Jerez-Calero A, Salvatierra-Cuenca MT, Benitez-Feliponi á, et al. Hypothermia plus melatonin in asphyctic newborns: a randomized-controlled pilot study[J]. Pediatr Crit Care Med, 2020, 21(7): 647-655. PMID: 32168305. DOI: 10.1097/PCC.0000000000002346.
Azzopardi D, Chew AT, Deierl A, et al. Prospective qualification of early cerebral biomarkers in a randomised trial of treatment with xenon combined with moderate hypothermia after birth asphyxia[J]. EBioMedicine, 2019, 47: 484-491. PMID: 31451436. PMCID: PMC6796501. DOI: 10.1016/j.ebiom.2019.08.034.