Establishment of a nomogram model for predicting the risk of early-onset sepsis in very preterm infants

WEI Xin-Yu, ZHANG Jing, HAO Qing-Fei, DU Yan-Na, CHENG Xiu-Yong

Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (9) : 915-922.

PDF(855 KB)
PDF(855 KB)
Chinese Journal of Contemporary Pediatrics ›› 2023, Vol. 25 ›› Issue (9) : 915-922. DOI: 10.7499/j.issn.1008-8830.2302002
CLINICAL RESEARCH

Establishment of a nomogram model for predicting the risk of early-onset sepsis in very preterm infants

  • WEI Xin-Yu, ZHANG Jing, HAO Qing-Fei, DU Yan-Na, CHENG Xiu-Yong
Author information +
History +

Abstract

Objective To identify risk factors associated with early-onset sepsis (EOS) in very preterm infants and develop a nomogram model for predicting the risk of EOS. Methods A retrospective analysis was conducted on 344 very preterm infants delivered at the First Affiliated Hospital of Zhengzhou University and admitted to the Department of Neonatology between January 2020 and December 2022. These infants were randomly divided into a training set (241 infants) and a validating set (103 infants) in a 7:3 ratio. The training set was further divided into two groups based on the presence or absence of EOS: EOS (n=64) and non-EOS (n=177). Multivariate logistic regression analysis was performed to identify risk factors for EOS in the very preterm infants. The nomogram model was developed using R language and validated using the validating set. The discriminative ability, calibration, and clinical utility of the model were assessed using receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis, respectively. Results The multivariate logistic regression analysis revealed that gestational age, need for tracheal intubation in the delivery room, meconium-stained amniotic fluid, serum albumin level on the first day of life, and chorioamnionitis were risk factors for EOS in very preterm infants (P<0.05). The area under the ROC curve for the training set was 0.925 (95%CI: 0.888-0.963), and that for the validating set was 0.796 (95%CI: 0.694-0.898), confirming the model's good discrimination. The Hosmer-Lemeshow goodness-of-fit test suggested that the model was well-fitting (P=0.621). The calibration curve analysis and decision curve analysis demonstrated that the model had high predictive efficacy and clinical applicability. Conclusions Gestational age, need for tracheal intubation in the delivery room, meconium-stained amniotic fluid, serum albumin level on the first day of life, and chorioamnionitis are significantly associated with the development of EOS in very preterm infants.The nomogram model for predicting the risk of EOS in very preterm infants, constructed based on these factors, has high predictive efficacy and clinical applicability.

Key words

Early-onset sepsis / Risk factor / Nomogram / Predictive model / Very preterm infant

Cite this article

Download Citations
WEI Xin-Yu, ZHANG Jing, HAO Qing-Fei, DU Yan-Na, CHENG Xiu-Yong. Establishment of a nomogram model for predicting the risk of early-onset sepsis in very preterm infants[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(9): 915-922 https://doi.org/10.7499/j.issn.1008-8830.2302002

References

1 Achten NB, Visser DH, Tromp E, et al. Early onset sepsis calculator implementation is associated with reduced healthcare utilization and financial costs in late preterm and term newborns[J]. Eur J Pediatr, 2020, 179(5): 727-734. PMID: 31897840. PMCID: PMC7160215. DOI: 10.1007/s00431-019-03510-9.
2 Okomo UA, Darboe S, Bah SY, et al. Maternal colonization and early-onset neonatal bacterial sepsis in the Gambia, West Africa: a genomic analysis of vertical transmission[J]. Clin Microbiol Infect, 2023, 29(3): 386.e1-386.e9. PMID: 36243352. DOI: 10.1016/j.cmi.2022.10.012.
3 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. PMID: 30934196. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005.
4 晏路标, 沙莉, 韩树萍, 等. 极/超早产儿血培养阳性早发型败血症的临床研究[J]. 中华实用儿科临床杂志, 2022, 37(2): 107-111. DOI: 10.3760/cma.j.cn101070-20200903-01456.
5 Benincasa BC, Silveira RC, Schlatter RP, et al. Multivariate risk and clinical signs evaluations for early-onset sepsis on late preterm and term newborns and their economic impact[J]. Eur J Pediatr, 2020, 179(12): 1859-1865. PMID: 32623627. DOI: 10.1007/s00431-020-03727-z.
6 Puopolo KM, Mukhopadhyay S, Hansen NI, et al. Identification of extremely premature infants at low risk for early-onset sepsis[J]. Pediatrics, 2017, 140(5): e20170925. PMID: 28982710. PMCID: PMC5654397. DOI: 10.1542/peds.2017-0925.
7 Str?mberg Celind F, Wennergren G, Vasileiadou S, et al. Antibiotics in the first week of life were associated with atopic asthma at 12 years of age[J]. Acta Paediatr, 2018, 107(10): 1798-1804. PMID: 29577417. PMCID: PMC6175332. DOI: 10.1111/apa.14332.
8 Aghaali M, Hashemi-Nazari SS. Association between early antibiotic exposure and risk of childhood weight gain and obesity: a systematic review and meta-analysis[J]. J Pediatr Endocrinol Metab, 2019, 32(5): 439-445. PMID: 31042643. DOI: 10.1515/jpem-2018-0437.
9 Mitre E, Susi A, Kropp LE, et al. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood[J]. JAMA Pediatr, 2018, 172(6): e180315. PMID: 29610864. PMCID: PMC6137535. DOI: 10.1001/jamapediatrics.2018.0315.
10 Mukhopadhyay S, Puopolo KM, Hansen NI, et al. Impact of early-onset sepsis and antibiotic use on death or survival with neurodevelopmental impairment at 2 years of age among extremely preterm infants[J]. J Pediatr, 2020, 221: 39-46.e5. PMID: 32446491. PMCID: PMC7248124. DOI: 10.1016/j.jpeds.2020.02.038.
11 Palatnik A, Liu LY, Lee A, et al. Predictors of early-onset neonatal sepsis or death among newborns born at <32 weeks of gestation[J]. J Perinatol, 2019, 39(7): 949-955. PMID: 31089257. DOI: 10.1038/s41372-019-0395-9.
12 徐丛剑, 华克勤. 实用妇产科学[M]. 4版. 北京: 人民卫生出版社, 2018: 149-206.
13 Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis[J]. Lancet, 2015, 385(9966): 430-440. PMID: 25280870. DOI: 10.1016/S0140-6736(14)61698-6.
14 Greenwood C, Morrow AL, Lagomarcino AJ, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter[J]. J Pediatr, 2014, 165(1): 23-29. PMID: 24529620. PMCID: PMC4074569. DOI: 10.1016/j.jpeds.2014.01.010.
15 Ting JY, Roberts A, Sherlock R, et al. Duration of initial empirical antibiotic therapy and outcomes in very low birth weight infants[J]. Pediatrics, 2019, 143(3): e20182286. PMID: 30819968. DOI: 10.1542/peds.2018-2286.
16 Stoll BJ, Puopolo KM, Hansen NI, et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies[J]. JAMA Pediatr, 2020, 174(7): e200593. PMID: 32364598. PMCID: PMC7199167. DOI: 10.1001/jamapediatrics.2020.0593.
17 Duggan HL, Chow SSW, Austin NC, et al. Early-onset sepsis in very preterm neonates in Australia and New Zealand, 2007-2018[J]. Arch Dis Child Fetal Neonatal Ed, 2023, 108(1): 31-37. PMID: 35705325. DOI: 10.1136/archdischild-2021-323243.
18 Venkatesh KK, Jackson W, Hughes BL, et al. Association of chorioamnionitis and its duration with neonatal morbidity and mortality[J]. J Perinatol, 2019, 39(5): 673-682. PMID: 30723279. DOI: 10.1038/s41372-019-0322-0.
19 Beck C, Gallagher K, Taylor LA, et al. Chorioamnionitis and risk for maternal and neonatal sepsis: a systematic review and meta-analysis[J]. Obstet Gynecol, 2021, 137(6): 1007-1022. PMID: 33957655. PMCID: PMC8905581. DOI: 10.1097/AOG.0000000000004377.
20 Tsamantioti E, Lisonkova S, Muraca G, et al. Chorioamnionitis and risk of long-term neurodevelopmental disorders in offspring: a population-based cohort study[J]. Am J Obstet Gynecol, 2022, 227(2): 287.e1-287.e17. PMID: 35305960. DOI: 10.1016/j.ajog.2022.03.028.
21 Zaki D, Balayla J, Beltempo M, et al. Interaction of chorioamnionitis at term with maternal, fetal and obstetrical factors as predictors of neonatal mortality: a population-based cohort study[J]. BMC Pregnancy Childbirth, 2020, 20(1): 454. PMID: 32770947. PMCID: PMC7414575. DOI: 10.1186/s12884-020-03142-0.
22 Ta?k?n A, Can E, Hamil??kan ?. Suspected or proven early-onset sepsis and NLR, PLR, and MPV parameters in neonates with born through MSAF[J]. Am J Perinatol, 2022, 39(6): 609-615. PMID: 33032327. DOI: 10.1055/s-0040-1718369.
23 李帅军, 冯琪, 童笑梅, 等. 超低出生体重儿复苏及呼吸支持治疗的多中心临床研究[J]. 中华新生儿科杂志, 2021, 36(2): 27-32. DOI: 10.3760/cma.j.issn.2096-2932.2021.02.005.
24 De Simone G, di Masi A, Ascenzi P. Serum albumin: a multifaced enzyme[J]. Int J Mol Sci, 2021, 22(18): 10086. PMID: 34576249. PMCID: PMC8466385. DOI: 10.3390/ijms221810086.
25 Yang C, Liu Z, Tian M, et al. Relationship between serum albumin levels and infections in newborn late preterm infants[J]. Med Sci Monit, 2016, 22: 92-98. PMID: 26747243. PMCID: PMC4716710. DOI: 10.12659/msm.895435.
26 Torer B, Hanta D, Yapakci E, et al. Association of serum albumin level and mortality in premature infants[J]. J Clin Lab Anal, 2016, 30(6): 867-872. PMID: 27074970. PMCID: PMC6807091. DOI: 10.1002/jcla.21949.
27 薛茹, 李展莉, 倪黎明, 等. 血清白蛋白水平与极低出生体重儿早发型败血症相关性研究[J]. 中华新生儿科杂志, 2022, 37(3): 214-218. DOI: 10.3760/cma.j.issn.2096-2932.2022.03.005.
PDF(855 KB)

Accesses

Citation

Detail

Sections
Recommended

/