Objective To investigate the risk factors for diabetic ketoacidosis (DKA) in children/adolescents with type 1 diabetes mellitus (T1DM) and to establish a model for predicting the risk of DKA. Methods A retrospective analysis was performed on 217 children/adolescents with T1DM who were admitted to General Hospital of Ningxia Medical University from January 2018 to December 2021. Among the 217 children/adolescents,169 cases with DKA were included as the DKA group and 48 cases without DKA were included as the non-DKA group. The risk factors for DKA in the children/adolescents with T1DM were analyzed, and a nomogram model was established for predicting the risk of DKA in children/adolescents with T1DM. Results For the 217 children/adolescents with T1DM, the incidence rate of DKA was 77.9% (169/217). The multivariate logistic regression analysis showed that high levels of random blood glucose, hemoglobin A1c (HbA1c), blood ketone body, and triglyceride on admission were closely associated with the development of DKA in the children/adolescents with T1DM (OR=1.156, 3.203×1015, 20.131, and 9.519 respectively; P<0.05). The nomogram prediction model had a C-statistic of 0.95, with a mean absolute error of 0.004 between the risk of DKA predicted by the nomogram model and the actual risk of DKA, indicating that the model had a good overall prediction ability. Conclusions High levels of random blood glucose, HbA1c, blood ketone body, and triglyceride on admission are closely associated with the development of DKA in children/adolescents with T1DM, and targeted intervention measures should be developed to reduce the risk of DKA.
Key words
Type 1 diabetes mellitus /
Ketoacidosis /
Risk factor /
Nomogram /
Child /
Adolescent
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
1 中华医学会儿科学分会内分泌遗传代谢学组, 中华儿科杂志编辑委员会. 中国儿童1型糖尿病标准化诊断与治疗专家共识(2020版)[J]. 中华儿科杂志, 2020, 58(6): 447-454. PMID: 32521955. DOI: 10.3760/cma.j.cn112140-20200221-00124.
2 Chen Q, Xu N, Chen Y, et al. Incidence of newly diagnosed type 1 diabetes mellitus in children and adolescents in Henan province of China from 2017 to 2020: a retrospective multicenter study based on hospitalization data[J]. J Clin Res Pediatr Endocrinol, 2022, 14(3): 287-292. PMID: 35438270. PMCID: PMC9422922. DOI: 10.4274/jcrpe.galenos.2022.2022-12-4.
3 Peng W, Yuan J, Chiavaroli V, et al. 10-year incidence of diabetic ketoacidosis at type 1 diabetes diagnosis in children aged less than 16 years from a large regional center (Hangzhou, China)[J]. Front Endocrinol (Lausanne), 2021, 12: 653519. PMID: 33986725. PMCID: PMC8112199. DOI: 10.3389/fendo.2021.653519.
4 Cherubini V, Grimsmann JM, ?kesson K, et al. Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents[J]. Diabetologia, 2020, 63(8): 1530-1541. PMID: 32382815. PMCID: PMC7351855. DOI: 10.1007/s00125-020-05152-1.
5 中华医学会儿科学会会内分泌遗传代谢学组, 《中华儿科杂志》编辑委员会. 儿童糖尿病酮症酸中毒诊疗指南(2009年版)[J]. 中华医学信息导报, 2009, 24(14): 20-22.
6 董佳婧, 刘殿媛, 王清. 1型糖尿病与其他自身免疫性疾病[J]. 中国实验诊断学, 2022, 26(7): 1097-1100. DOI: 10.3969/j.issn.1007-4287.2022.07.041.
7 曹嘉玲. 胰岛素泵在30例1型糖尿病合并酮症酸中毒患儿急救期的应用效果[J]. 糖尿病新世界, 2022, 25(13): 14-18. DOI: 10.16658/j.cnki.1672-4062.2022.13.014.
8 范言诗, 丁曙霞, 谢晓恬. 儿童1型糖尿病合并酮症酸中毒的临床特征分析[J]. 现代实用医学, 2022, 34(2): 231-234. DOI: 10.3969/j.issn.1671-0800.2022.02.037.
9 Helminen O, Aspholm S, Pokka T, et al. HbA1c predicts time to diagnosis of type 1 diabetes in children at risk[J]. Diabetes, 2015, 64(5): 1719-1727. PMID: 25524912. DOI: 10.2337/db14-0497.
10 司珩, 李梦檀. HbA1c、CK及FBG联合检测在糖尿病微血管病变诊断中的应用[J]. 医药论坛杂志, 2021, 42(2): 138-140.
11 Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group, Nathan DM, Zinman B, et al. Modern-day clinical course of type 1 diabetes mellitus after 30 years' duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-2005)[J]. Arch Intern Med, 2009, 169(14): 1307-1316. PMID: 19636033. PMCID: PMC2866072. DOI: 10.1001/archinternmed.2009.193.
12 Osei K, Rhinesmith S, Gaillard T, et al. Is glycosylated hemoglobin A1c a surrogate for metabolic syndrome in nondiabetic, first-degree relatives of African-American patients with type 2 diabetes?[J]. J Clin Endocrinol Metab, 2003, 88(10): 4596-4601. PMID: 14557428. DOI: 10.1210/jc.2003-030686.
13 宫铭. 初发1型糖尿病儿童血脂情况及其影响因素分析[D]. 沈阳: 中国医科大学, 2018.
14 王艳. 2型糖尿病并发周围神经病变风险的列线图预测模型构建[D]. 乌鲁木齐: 新疆医科大学, 2023.
15 陈萍, 王玉红. 2型糖尿病患者发生听力损失的影响因素及列线图预测模型构建[J]. 中国中西医结合耳鼻咽喉科杂志, 2023, 31(3): 195-199. DOI: 10.16542/j.cnki.issn.1007-4856.2023.03.008.
16 Wu Y, Tan W, Liu Y, et al. Development and validation of a nomogram prediction model for hypertension-diabetes comorbidity based on chronic disease management in the community[J]. Lipids Health Dis, 2023, 22(1): 135. PMID: 37620958. PMCID: PMC10463439. DOI: 10.1186/s12944-023-01904-1.
17 Zhang C, Zhou L, Ma M, et al. Dynamic nomogram prediction model for diabetic retinopathy in patients with type 2 diabetes mellitus[J]. BMC Ophthalmol, 2023, 23(1): 186. PMID: 37106337. PMCID: PMC10142167. DOI: 10.1186/s12886-023-02925-1.
18 张燕, 张广意, 马嫔, 等. 妊娠期糖尿病患者分娩巨大儿列线图预测模型的构建[J]. 宁夏医科大学学报, 2023, 45(4): 393-399. DOI: 10.16050/j.cnki.issn1674-6309.2023.04.011.