Recent research on the role of oxidative stress in the pathogenesis of attention deficit hyperactivity disorder
WU Chen-Lei, WANG Meng-Fei, ZHOU Rong-Yi
Pediatrics Hospital, First Affiliated Hospital of Henan University of Chinese Medicine/College of Pediatrics, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China (Zhou R-Y, Email: zhourongyitcm@sina.com)
Abstract Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children and adolescents, and its etiology and pathogenesis are still unclear. Brain is the organ with the largest oxygen consumption in human body and is easily affected by oxidative imbalance. Oxidative stress has become the key research direction for the pathogenesis of ADHD, but there is still a lack of relevant studies in China. Based on the latest research findings in China and overseas, this article reviews the clinical and experimental studies on oxidative stress in ADHD and explores the association of oxidative stress with neurotransmitter imbalance, neuroinflammation, and cell apoptosis in the pathogenesis of ADHD, so as to provide new research ideas for exploring the pathogenesis of ADHD.
WU Chen-Lei,WANG Meng-Fei,ZHOU Rong-Yi. Recent research on the role of oxidative stress in the pathogenesis of attention deficit hyperactivity disorder[J]. CJCP, 2024, 26(2): 201-206.
WU Chen-Lei,WANG Meng-Fei,ZHOU Rong-Yi. Recent research on the role of oxidative stress in the pathogenesis of attention deficit hyperactivity disorder[J]. CJCP, 2024, 26(2): 201-206.
Wang TT, Liu KH, Li ZZ, et al. Prevalence of attention deficit/hyperactivity disorder among children and adolescents in China: a systematic review and meta-analysis[J]. BMC Psychiatry, 2017, 17(1): 32. PMID: 28103833. PMCID: PMC5244567. DOI: 10.1186/s12888-016-1187-9.
Oyefeso FA, Muotri AR, Wilson CG, et al. Brain organoids: a promising model to assess oxidative stress-induced central nervous system damage[J]. Dev Neurobiol, 2021, 81(5): 653-670. PMID: 33942547. PMCID: PMC8364474. DOI: 10.1002/dneu.22828.
Lushchak VI. Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision[J]. Pflugers Arch, 2021, 473(5): 713-722. PMID: 33599804. DOI: 10.1007/s00424-021-02531-4.
Kul M, Unal F, Kandemir H, et al. Evaluation of oxidative metabolism in child and adolescent patients with attention deficit hyperactivity disorder[J]. Psychiatry Investig, 2015, 12(3): 361-366. PMID: 26207130. PMCID: PMC4504919. DOI: 10.4306/pi.2015.12.3.361.
Miniksar DY, Cans?z MA, G??men AY, et al. The effect of drug use, body mass index and blood pressure on oxidative stress levels in children and adolescents with attention deficit and hyperactivity disorder[J]. Clin Psychopharmacol Neurosci, 2023, 21(1): 88-98. PMID: 36700315. PMCID: PMC9889889. DOI: 10.9758/cpn.2023.21.1.88.
Ceylan M, Sener S, Bayraktar AC, et al. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(8): 1491-1494. PMID: 20732373. DOI: 10.1016/j.pnpbp.2010.08.010.
Morimoto M, Hashimoto T, Tsuda Y, et al. Evaluation of oxidative stress and antioxidant capacity in healthy children[J]. J Chin Med Assoc, 2019, 82(8): 651-654. PMID: 30893262. DOI: 10.1097/JCMA.0000000000000045.
Kitaoka T, Morimoto M, Hashimoto T, et al. Evaluation of the efficacy of drug treatment based on measurement of the oxidative stress, using reactive oxygen metabolites and biological antioxidant potential, in children with autism spectrum disorder and attention deficit hyperactivity disorder[J]. J Pharm Health Care Sci, 2020, 6: 8. PMID: 32351702. PMCID: PMC7183642. DOI: 10.1186/s40780-020-00164-w.
Verlaet AAJ, Breynaert A, Ceulemans B, et al. Oxidative stress and immune aberrancies in attention-deficit/hyperactivity disorder (ADHD): a case-control comparison[J]. Eur Child Adolesc Psychiatry, 2019, 28(5): 719-729. PMID: 30350094. DOI: 10.1007/s00787-018-1239-4.
Leffa DT, Bellaver B, de Oliveira C, et al. Increased oxidative parameters and decreased cytokine levels in an animal model of attention-deficit/hyperactivity disorder[J]. Neurochem Res, 2017, 42(11): 3084-3092. PMID: 28664398. DOI: 10.1007/s11064-017-2341-6.
Koz?owska A, Wojtacha P, Równiak M, et al. ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats[J]. Psychopharmacology (Berl), 2019, 236(10): 2937-2958. PMID: 30737597. PMCID: PMC6820808. DOI: 10.1007/s00213-019-5180-0.
Sharma N, Luhach K, Golani LK, et al. Vinpocetine, a PDE1 modulator, regulates markers of cerebral health, inflammation, and oxidative stress in a rat model of prenatal alcohol-induced experimental attention deficit hyperactivity disorder[J]. Alcohol, 2022, 105: 25-34. PMID: 35995260. DOI: 10.1016/j.alcohol.2022.08.005.
Janner DE, Gomes NS, Poetini MR, et al. Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster[J]. Neurotoxicology, 2021, 85: 79-89. PMID: 34000340. DOI: 10.1016/j.neuro.2021.05.006.
Ayala-Lopez N, Watts SW. Physiology and pharmacology of neurotransmitter transporters[J]. Compr Physiol, 2021, 11(3): 2279-2295. PMID: 34190339. DOI: 10.1002/cphy.c200035.
Monzani E, Nicolis S, Dell'Acqua S, et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson's and other neurodegenerative diseases[J]. Angew Chem Int Ed Engl, 2019, 58(20): 6512-6527. PMID: 30536578. DOI: 10.1002/anie.201811122.
He JY, Zhu GF, Wang GQ, et al. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration[J]. Oxid Med Cell Longev, 2020, 2020: 6137521. PMID: 32714488. PMCID: PMC7354668. DOI: 10.1155/2020/6137521.
Zhou RY, Wang JJ, Sun JC, et al. Attention deficit hyperactivity disorder may be a highly inflammation and immune-associated disease (Review)[J]. Mol Med Rep, 2017, 16(4): 5071-5077. PMID: 28849096. DOI: 10.3892/mmr.2017.7228.
Sharma N, Dhiman N, Golani LK, et al. Papaverine ameliorates prenatal alcohol-induced experimental attention deficit hyperactivity disorder by regulating neuronal function, inflammation, and oxidative stress[J]. Int J Dev Neurosci, 2021, 81(1): 71-81. PMID: 33175424. DOI: 10.1002/jdn.10076.
Sho T, Xu JX. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation[J]. Biotechnol Appl Biochem, 2019, 66(1): 4-13. PMID: 30315709. DOI: 10.1002/bab.1700.
Chen PH, Hsueh TC, Hong JR. Infectious spleen and kidney necrosis virus induces the reactive oxidative species/Nrf2-mediated oxidative stress response for the regulation of mitochondrion-mediated Bax/Bak cell death signals in GF-1 cells[J]. Front Microbiol, 2022, 13: 958476. PMID: 36304944. PMCID: PMC9593061. DOI: 10.3389/fmicb.2022.958476.
Patergnani S, Danese A, Bouhamida E, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer[J]. Int J Mol Sci, 2020, 21(21): 8323. PMID: 33171939. PMCID: PMC7664196. DOI: 10.3390/ijms21218323.