Preventive early intervention strategies for neurodevelopmental disorders of high-risk infants

NONG Shao-Han, YU Wei-Hong, LI Cui-Hong, ZHOU Xiao-Guang

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (3) : 297-301.

PDF(506 KB)
PDF(506 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (3) : 297-301. DOI: 10.7499/j.issn.1008-8830.2310107
REVIEW

Preventive early intervention strategies for neurodevelopmental disorders of high-risk infants

  • NONG Shao-Han, YU Wei-Hong, LI Cui-Hong, ZHOU Xiao-Guang
Author information +
History +

Abstract

Neurodevelopmental disorders in children have become a significant global public health concern, impacting child health worldwide. In China, the current intervention model for high-risk infants involves early diagnosis and early treatment. However, in recent years, overseas studies have explored novel preventive early intervention strategies for neurodevelopmental disorders in high-risk infants, achieving promising results. This article provides a comprehensive review of the optimal timing, methods, and intervention models of the preventive early intervention strategies for neurodevelopmental disorders in high-risk infants. The aim is to enhance the awareness and knowledge of healthcare professionals regarding preventive early intervention strategies for neurodevelopmental disorders in high-risk infants, facilitate clinical research and application of such interventions in China, and ultimately reduce the incidence of neurodevelopmental disorders in this high-risk population.

Key words

Neurodevelopmental disorder / Preventive intervention / High-risk infant

Cite this article

Download Citations
NONG Shao-Han, YU Wei-Hong, LI Cui-Hong, ZHOU Xiao-Guang. Preventive early intervention strategies for neurodevelopmental disorders of high-risk infants[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(3): 297-301 https://doi.org/10.7499/j.issn.1008-8830.2310107

References

1 Pascal A, Govaert P, Oostra A, et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review[J]. Dev Med Child Neurol, 2018, 60(4): 342-355. PMID: 29350401. DOI: 10.1111/dmcn.13675.
2 Kim GH, Lee G, Ha S, et al. Declining incidence of cerebral palsy in South Korea[J]. Sci Rep, 2023, 13(1): 10496. PMID: 37380633. PMCID: PMC10307863. DOI: 10.1038/s41598-023-36236-8.
3 朱红敏, 袁纯辉, 刘智胜. 儿童神经发育障碍疾病研究进展[J]. 中国当代儿科杂志, 2023, 25(1): 91-97. PMID: 36655670. PMCID: PMC9893816. DOI: 10.7499/j.issn.1008-8830.2208171.
4 Perin J, Mulick A, Yeung D, et al. Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the sustainable development goals[J]. Lancet Child Adolesc Health, 2022, 6(2): 106-115. PMID: 34800370. PMCID: PMC8786667. DOI: 10.1016/S2352-4642(21)00311-4.
5 McIntyre S, Goldsmith S, Webb A, et al. Global prevalence of cerebral palsy: a systematic analysis[J]. Dev Med Child Neurol, 2022, 64(12): 1494-1506. PMID: 35952356. PMCID: PMC9804547. DOI: 10.1111/dmcn.15346.
6 Toldo M, Varishthananda S, Einspieler C, et al. Enhancing early detection of neurological and developmental disorders and provision of intervention in low-resource settings in Uttar Pradesh, India: study protocol of the G.A.N.E.S.H. programme[J]. BMJ Open, 2020, 10(11): e037335. PMID: 33148727. PMCID: PMC7640505. DOI: 10.1136/bmjopen-2020-037335.
7 Billotte M, Deken V, Joriot S, et al. Screening for neurodevelopmental disorders in children with congenital heart disease[J]. Eur J Pediatr, 2021, 180(4): 1157-1167. PMID: 33119792. DOI: 10.1007/s00431-020-03850-x.
8 Kujabi ML, Petersen JP, Pedersen MV, et al. Neonatal jaundice and autism spectrum disorder: a systematic review and meta-analysis[J]. Pediatr Res, 2021, 90(5): 934-949. PMID: 33526883. DOI: 10.1038/s41390-020-01272-x.
9 中国医师协会儿科医师分会儿童保健学组. NICU出院高危儿0~3岁生长发育随访管理技术的专家共识[J]. 中国儿童保健杂志, 2021, 29(8): 809-814. DOI: 10.11852/zgetbjzz2020-2035.
10 Spittle AJ, Treyvaud K, Lee KJ, et al. The role of social risk in an early preventative care programme for infants born very preterm: a randomized controlled trial[J]. Dev Med Child Neurol, 2018, 60(1): 54-62. PMID: 29058313. DOI: 10.1111/dmcn.13594.
11 Green J, Pickles A, Pasco G, et al. Randomised trial of a parent-mediated intervention for infants at high risk for autism: longitudinal outcomes to age 3 years[J]. J Child Psychol Psychiatry, 2017, 58(12): 1330-1340. PMID: 28393350. PMCID: PMC5724485. DOI: 10.1111/jcpp.12728.
12 Min X, Li C, Yan Y. Parental age and the risk of ADHD in offspring: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2021, 18(9): 4939. PMID: 34066379. PMCID: PMC8124990. DOI: 10.3390/ijerph18094939.
13 中华预防医学会儿童保健分会, 中国疾病预防控制中心妇幼保健中心, 中国妇幼保健协会高危儿童健康管理专委会. 高危儿规范化健康管理专家共识[J]. 中国儿童保健杂志, 2023, 31(6): 581-585. DOI: 10.11852/zgetbjzz2023-0347.
14 Reynolds E, Blanchard S, Jalazo E, et al. Newborn screening conditions: early intervention and probability of developmental delay[J]. J Dev Behav Pediatr, 2023, 44(5): e379-e387. PMID: 37084319. DOI: 10.1097/DBP.0000000000001179.
15 Novak I, Morgan C. High-risk follow-up: early intervention and rehabilitation[J]. Handb Clin Neurol, 2019, 162: 483-510. PMID: 31324326. DOI: 10.1016/B978-0-444-64029-1.00023-0.
16 中国医师协会神经修复学分会儿童神经修复学专业委员会. 婴幼儿脑损伤神经修复治疗专家共识[J]. 中华实用儿科临床杂志, 2019, 34(1): 2-8. DOI: 10.3760/cma.j.issn.2095-428X.2019.01.002.
17 Christner LP, Irani S, McGowan C, et al. Previous missed visits and independent risk of loss to follow-up in the high-risk neonatal follow-up clinic[J]. Early Hum Dev, 2023, 183: 105813. PMID: 37399731. DOI: 10.1016/j.earlhumdev.2023.105813.
18 Valadez EA, Tottenham N, Tabachnick AR, et al. Early parenting intervention effects on brain responses to maternal cues among high-risk children[J]. Am J Psychiatry, 2020, 177(9): 818-826. PMID: 32731812. PMCID: PMC7716800. DOI: 10.1176/appi.ajp.2020.20010011.
19 Sgandurra G, Beani E, Giampietri M, et al. Early intervention at home in infants with congenital brain lesion with CareToy revised: a RCT protocol[J]. BMC Pediatr, 2018, 18(1): 295. PMID: 30185165. PMCID: PMC6126039. DOI: 10.1186/s12887-018-1264-y.
20 Kohli-Lynch M, Tann CJ, Ellis ME. Early intervention for children at high risk of developmental disability in low- and middle-income countries: a narrative review[J]. Int J Environ Res Public Health, 2019, 16(22): 4449. PMID: 31766126. PMCID: PMC6888619. DOI: 10.3390/ijerph16224449.
21 Hei M, Gao X, Li Y, et al. Family integrated care for preterm infants in China: a cluster randomized controlled trial[J]. J Pediatr, 2021, 228: 36-43.e2. PMID: 32898578. DOI: 10.1016/j.jpeds.2020.09.006.
22 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019: 104-107.
23 Chiu HY, Chu SM, Lin HY, et al. Evidence base multi-discipline critical strategies toward better tomorrow for very preterm infants[J]. Pediatr Neonatol, 2020, 61(4): 371-377. PMID: 32201157. DOI: 10.1016/j.pedneo.2020.01.005.
24 Paulsen H, Ljungblad UW, Riiser K, et al. Early neurological and motor function in infants born moderate to late preterm or small for gestational age at term: a prospective cohort study[J]. BMC Pediatr, 2023, 23(1): 390. PMID: 37553581. PMCID: PMC10408141. DOI: 10.1186/s12887-023-04220-w.
25 Laptook AR. Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants[J]. Clin Perinatol, 2013, 40(4): 723-738. PMID: 24182958. DOI: 10.1016/j.clp.2013.07.005.
26 Landing BH, Shankle WR, Boyd JP. Quantitative microscopic anatomy, illustrated by its potential role in furthering understanding of the processes of structuring the developing human cerebral cortex[J]. Acta Paediatr Jpn, 1998, 40(5): 400-418. PMID: 9821697. DOI: 10.1111/j.1442-200x.1998.tb01959.x.
27 Kovacs-Balint Z, Feczko E, Pincus M, et al. Early developmental trajectories of functional connectivity along the visual pathways in rhesus monkeys[J]. Cereb Cortex, 2019, 29(8): 3514-3526. PMID: 30272135. PMCID: PMC6644858. DOI: 10.1093/cercor/bhy222.
28 Meretoja A, Keshtkaran M, Tatlisumak T, et al. Endovascular therapy for ischemic stroke: save a minute-save a week[J]. Neurology, 2017, 88(22): 2123-2127. PMID: 28455382. DOI: 10.1212/WNL.0000000000003981.
29 Sa de Almeida J, Meskaldji DE, Loukas S, et al. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns[J]. Neuroimage, 2021, 225: 117440. PMID: 33039621. DOI: 10.1016/j.neuroimage.2020.117440.
30 Mouka V, Drougia A, Xydis VG, et al. Functional and structural connectivity of the brain in very preterm babies: relationship with gestational age and body and brain growth[J]. Pediatr Radiol, 2019, 49(8): 1078-1084. PMID: 31053875. DOI: 10.1007/s00247-019-04412-6.
31 Eves R, Mendon?a M, Baumann N, et al. Association of very preterm birth or very low birth weight with intelligence in adulthood: an individual participant data meta-analysis[J]. JAMA Pediatr, 2021, 175(8): e211058. PMID: 34047752. PMCID: PMC8329745. DOI: 10.1001/jamapediatrics.2021.1058.
32 Vanes L, Fenn-Moltu S, Hadaya L, et al. Longitudinal neonatal brain development and socio-demographic correlates of infant outcomes following preterm birth[J]. Dev Cogn Neurosci, 2023, 61: 101250. PMID: 37150083. PMCID: PMC10195853. DOI: 10.1016/j.dcn.2023.101250.
33 Thomason ME, Hect J, Waller R, et al. Prenatal neural origins of infant motor development: associations between fetal brain and infant motor development[J]. Dev Psychopathol, 2018, 30(3): 763-772. PMID: 30068433. PMCID: PMC6261435. DOI: 10.1017/S095457941800072X.
34 Zheng W, Zhao L, Zhao Z, et al. Spatiotemporal developmental gradient of thalamic morphology, microstructure, and connectivity from the third trimester to early infancy[J]. J Neurosci, 2023, 43(4): 559-570. PMID: 36639904. PMCID: PMC9888512. DOI: 10.1523/JNEUROSCI.0874-22.2022.
35 李丽桦. 克林顿提出美国教育十点行动计划[J]. 外国中小学教育, 1997(5): 30-31.
36 Lordier L, Loukas S, Grouiller F, et al. Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI[J]. Neuroimage, 2019, 185: 857-864. PMID: 29630995. DOI: 10.1016/j.neuroimage.2018.03.078.
37 Kadlaskar G, Seidl A, Tager-Flusberg H, et al. Caregiver touch-speech communication and infant responses in 12-month-olds at high risk for autism spectrum disorder[J]. J Autism Dev Disord, 2020, 50(3): 1064-1072. PMID: 31754946. DOI: 10.1007/s10803-019-04310-8.
38 Ye Y, Liu Q, Zhang W, et al. Developmental exposure to psychostimulant primes activity-dependent gene induction in frontal cortex[J]. Dev Neurobiol, 2019, 79(1): 96-108. PMID: 30548567. PMCID: PMC6349466. DOI: 10.1002/dneu.22660.
39 Reichow B, Kogan C, Barbui C, et al. Caregiver skills training for caregivers of individuals with neurodevelopmental disorders: a systematic review and meta-analysis[J]. Dev Med Child Neurol, 2023. Epub ahead of print. PMID: 37786292. DOI: 10.1111/dmcn.15764.
40 Panceri C, Silveira RC, Procianoy RS, et al. Motor development in the first year of life predicts impairments in cognition and language at 3 years old in a Brazilian preterm cohort of low-income families[J]. Front Neurosci, 2022, 16: 1034616. PMID: 36312029. PMCID: PMC9596919. DOI: 10.3389/fnins.2022.1034616.
PDF(506 KB)

Accesses

Citation

Detail

Sections
Recommended

/