Abstract Neurodevelopmental disorders in children have become a significant global public health concern, impacting child health worldwide. In China, the current intervention model for high-risk infants involves early diagnosis and early treatment. However, in recent years, overseas studies have explored novel preventive early intervention strategies for neurodevelopmental disorders in high-risk infants, achieving promising results. This article provides a comprehensive review of the optimal timing, methods, and intervention models of the preventive early intervention strategies for neurodevelopmental disorders in high-risk infants. The aim is to enhance the awareness and knowledge of healthcare professionals regarding preventive early intervention strategies for neurodevelopmental disorders in high-risk infants, facilitate clinical research and application of such interventions in China, and ultimately reduce the incidence of neurodevelopmental disorders in this high-risk population.
NONG Shao-Han,YU Wei-Hong,LI Cui-Hong et al. Preventive early intervention strategies for neurodevelopmental disorders of high-risk infants[J]. CJCP, 2024, 26(3): 297-301.
NONG Shao-Han,YU Wei-Hong,LI Cui-Hong et al. Preventive early intervention strategies for neurodevelopmental disorders of high-risk infants[J]. CJCP, 2024, 26(3): 297-301.
Pascal A, Govaert P, Oostra A, et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review[J]. Dev Med Child Neurol, 2018, 60(4): 342-355. PMID: 29350401. DOI: 10.1111/dmcn.13675.
Perin J, Mulick A, Yeung D, et al. Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the sustainable development goals[J]. Lancet Child Adolesc Health, 2022, 6(2): 106-115. PMID: 34800370. PMCID: PMC8786667. DOI: 10.1016/S2352-4642(21)00311-4.
Toldo M, Varishthananda S, Einspieler C, et al. Enhancing early detection of neurological and developmental disorders and provision of intervention in low-resource settings in Uttar Pradesh, India: study protocol of the G.A.N.E.S.H. programme[J]. BMJ Open, 2020, 10(11): e037335. PMID: 33148727. PMCID: PMC7640505. DOI: 10.1136/bmjopen-2020-037335.
Billotte M, Deken V, Joriot S, et al. Screening for neurodevelopmental disorders in children with congenital heart disease[J]. Eur J Pediatr, 2021, 180(4): 1157-1167. PMID: 33119792. DOI: 10.1007/s00431-020-03850-x.
Kujabi ML, Petersen JP, Pedersen MV, et al. Neonatal jaundice and autism spectrum disorder: a systematic review and meta-analysis[J]. Pediatr Res, 2021, 90(5): 934-949. PMID: 33526883. DOI: 10.1038/s41390-020-01272-x.
Spittle AJ, Treyvaud K, Lee KJ, et al. The role of social risk in an early preventative care programme for infants born very preterm: a randomized controlled trial[J]. Dev Med Child Neurol, 2018, 60(1): 54-62. PMID: 29058313. DOI: 10.1111/dmcn.13594.
Green J, Pickles A, Pasco G, et al. Randomised trial of a parent-mediated intervention for infants at high risk for autism: longitudinal outcomes to age 3 years[J]. J Child Psychol Psychiatry, 2017, 58(12): 1330-1340. PMID: 28393350. PMCID: PMC5724485. DOI: 10.1111/jcpp.12728.
Reynolds E, Blanchard S, Jalazo E, et al. Newborn screening conditions: early intervention and probability of developmental delay[J]. J Dev Behav Pediatr, 2023, 44(5): e379-e387. PMID: 37084319. DOI: 10.1097/DBP.0000000000001179.
Christner LP, Irani S, McGowan C, et al. Previous missed visits and independent risk of loss to follow-up in the high-risk neonatal follow-up clinic[J]. Early Hum Dev, 2023, 183: 105813. PMID: 37399731. DOI: 10.1016/j.earlhumdev.2023.105813.
Kohli-Lynch M, Tann CJ, Ellis ME. Early intervention for children at high risk of developmental disability in low- and middle-income countries: a narrative review[J]. Int J Environ Res Public Health, 2019, 16(22): 4449. PMID: 31766126. PMCID: PMC6888619. DOI: 10.3390/ijerph16224449.
Hei M, Gao X, Li Y, et al. Family integrated care for preterm infants in China: a cluster randomized controlled trial[J]. J Pediatr, 2021, 228: 36-43.e2. PMID: 32898578. DOI: 10.1016/j.jpeds.2020.09.006.
Chiu HY, Chu SM, Lin HY, et al. Evidence base multi-discipline critical strategies toward better tomorrow for very preterm infants[J]. Pediatr Neonatol, 2020, 61(4): 371-377. PMID: 32201157. DOI: 10.1016/j.pedneo.2020.01.005.
Paulsen H, Ljungblad UW, Riiser K, et al. Early neurological and motor function in infants born moderate to late preterm or small for gestational age at term: a prospective cohort study[J]. BMC Pediatr, 2023, 23(1): 390. PMID: 37553581. PMCID: PMC10408141. DOI: 10.1186/s12887-023-04220-w.
Laptook AR. Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants[J]. Clin Perinatol, 2013, 40(4): 723-738. PMID: 24182958. DOI: 10.1016/j.clp.2013.07.005.
Landing BH, Shankle WR, Boyd JP. Quantitative microscopic anatomy, illustrated by its potential role in furthering understanding of the processes of structuring the developing human cerebral cortex[J]. Acta Paediatr Jpn, 1998, 40(5): 400-418. PMID: 9821697. DOI: 10.1111/j.1442-200x.1998.tb01959.x.
Kovacs-Balint Z, Feczko E, Pincus M, et al. Early developmental trajectories of functional connectivity along the visual pathways in rhesus monkeys[J]. Cereb Cortex, 2019, 29(8): 3514-3526. PMID: 30272135. PMCID: PMC6644858. DOI: 10.1093/cercor/bhy222.
Meretoja A, Keshtkaran M, Tatlisumak T, et al. Endovascular therapy for ischemic stroke: save a minute-save a week[J]. Neurology, 2017, 88(22): 2123-2127. PMID: 28455382. DOI: 10.1212/WNL.0000000000003981.
Sa de Almeida J, Meskaldji DE, Loukas S, et al. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns[J]. Neuroimage, 2021, 225: 117440. PMID: 33039621. DOI: 10.1016/j.neuroimage.2020.117440.
Mouka V, Drougia A, Xydis VG, et al. Functional and structural connectivity of the brain in very preterm babies: relationship with gestational age and body and brain growth[J]. Pediatr Radiol, 2019, 49(8): 1078-1084. PMID: 31053875. DOI: 10.1007/s00247-019-04412-6.
Lordier L, Loukas S, Grouiller F, et al. Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI[J]. Neuroimage, 2019, 185: 857-864. PMID: 29630995. DOI: 10.1016/j.neuroimage.2018.03.078.
Kadlaskar G, Seidl A, Tager-Flusberg H, et al. Caregiver touch-speech communication and infant responses in 12-month-olds at high risk for autism spectrum disorder[J]. J Autism Dev Disord, 2020, 50(3): 1064-1072. PMID: 31754946. DOI: 10.1007/s10803-019-04310-8.
Reichow B, Kogan C, Barbui C, et al. Caregiver skills training for caregivers of individuals with neurodevelopmental disorders: a systematic review and meta-analysis[J]. Dev Med Child Neurol, 2023. Epub ahead of print. PMID: 37786292. DOI: 10.1111/dmcn.15764.
Panceri C, Silveira RC, Procianoy RS, et al. Motor development in the first year of life predicts impairments in cognition and language at 3 years old in a Brazilian preterm cohort of low-income families[J]. Front Neurosci, 2022, 16: 1034616. PMID: 36312029. PMCID: PMC9596919. DOI: 10.3389/fnins.2022.1034616.