Specific changes in gut microbiota and short-chain fatty acid levels in infants with cow's milk protein allergy

YU Zhi-Dan, YUE Ling-Ling, WANG Zi-Hui, WANG Rui-Zi, LI Li-Feng, ZHANG Wan-Cun, LI Xiao-Qin

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (3) : 236-243.

PDF(1385 KB)
PDF(1385 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (3) : 236-243. DOI: 10.7499/j.issn.1008-8830.2308007
CLINICAL RESEARCH

Specific changes in gut microbiota and short-chain fatty acid levels in infants with cow's milk protein allergy

  • YU Zhi-Dan, YUE Ling-Ling, WANG Zi-Hui, WANG Rui-Zi, LI Li-Feng, ZHANG Wan-Cun, LI Xiao-Qin
Author information +
History +

Abstract

Objective To explore the changes in gut microbiota and levels of short-chain fatty acids (SCFA) in infants with cow's milk protein allergy (CMPA), and to clarify their role in CMPA. Methods A total of 25 infants diagnosed with CMPA at Children's Hospital Affiliated to Zhengzhou University from August 2019 to August 2020 were enrolled as the CMPA group, and 25 healthy infants were selected as the control group. Fecal samples (200 mg) were collected from both groups and subjected to 16S rDNA high-throughput sequencing technology and liquid chromatography-mass spectrometry to analyze the changes in gut microbial composition and metabolites. Microbial diversity was analyzed in conjunction with metabolites. Results Compared to the control group, the CMPA group showed altered gut microbial structure and significantly increased α-diversity (P<0.001). The abundance of Firmicutes, Clostridiales and Bacteroidetes was significantly decreased, while the abundance of Sphingomonadaceae, Clostridiaceae_1 and Mycoplasmataceae was significantly increased in the CMPA group compared to the control group (P<0.001). Metabolomic analysis revealed reduced levels of acetic acid, butyric acid, and isovaleric acid in the CMPA group compared to the control group, and the levels of the metabolites were positively correlated with the abundance of SCFA-producing bacteria such as Faecalibacterium and Roseburia (P<0.05). Conclusions CMPA infants have alterations in gut microbial structure, increased microbial diversity, and decreased levels of SCFA, which may contribute to increased intestinal inflammation.

Key words

Cow's milk protein allergy / Gut microbiota diversity / Short-chain fatty acid / Infant

Cite this article

Download Citations
YU Zhi-Dan, YUE Ling-Ling, WANG Zi-Hui, WANG Rui-Zi, LI Li-Feng, ZHANG Wan-Cun, LI Xiao-Qin. Specific changes in gut microbiota and short-chain fatty acid levels in infants with cow's milk protein allergy[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(3): 236-243 https://doi.org/10.7499/j.issn.1008-8830.2308007

References

1 Maslin K, Fox AT, Chambault M, et al. Palatability of hypoallergenic formulas for cow's milk allergy and healthcare professional recommendation[J]. Pediatr Allergy Immunol, 2018, 29(8): 857-862. PMID: 30192414. DOI: 10.1111/pai.12979.
2 Dogra SK, Kwong Chung C, Wang D, et al. Nurturing the early life gut microbiome and immune maturation for long term health[J]. Microorganisms, 2021, 9(10): 2110. PMID: 34683431. PMCID: PMC8537230. DOI: 10.3390/microorganisms9102110.
3 Savage JH, Lee-Sarwar KA, Sordillo J, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood[J]. Allergy, 2018, 73(1): 145-152. PMID: 28632934. PMCID: PMC5921051. DOI: 10.1111/all.13232.
4 Peroni DG, Nuzzi G, Trambusti I, et al. Microbiome composition and its impact on the development of allergic diseases[J]. Front Immunol, 2020, 11: 700. PMID: 32391012. PMCID: PMC7191078. DOI: 10.3389/fimmu.2020.00700.
5 Pascal M, Perez-Gordo M, Caballero T, et al. Microbiome and allergic diseases[J]. Front Immunol, 2018, 9: 1584. PMID: 30065721. PMCID: PMC6056614. DOI: 10.3389/fimmu.2018.01584.
6 Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. PMID: 23828891. PMCID: PMC3807819. DOI: 10.1126/science.1241165.
7 Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. PMID: 24226773. PMCID: PMC3869884. DOI: 10.1038/nature12726.
8 Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480): 446-450. PMID: 24226770. DOI: 10.1038/nature12721.
9 中华医学会儿科学分会免疫学组, 中华医学会儿科学分会儿童保健学组, 中华医学会儿科学分会消化学组, 等. 中国婴幼儿牛奶蛋白过敏诊治循证建议[J]. 中华儿科杂志, 2013, 51(3): 183-186. PMID: 23751578. DOI: 10.3760/cma.j.issn.0578-1310.2013.03.006.
10 Azad MB, Konya T, Guttman DS, et al. Infant gut microbiota and food sensitization: associations in the first year of life[J]. Clin Exp Allergy, 2015, 45(3): 632-643. PMID: 25599982. DOI: 10.1111/cea.12487.
11 Aitoro R, Paparo L, Amoroso A, et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy[J]. Nutrients, 2017, 9(7): 672. PMID: 28657607. PMCID: PMC5537787. DOI: 10.3390/nu9070672.
12 Kim KS, Hong SW, Han D, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine[J]. Science, 2016, 351(6275): 858-863. PMID: 26822607. DOI: 10.1126/science.aac5560.
13 Nakayama J, Kobayashi T, Tanaka S, et al. Aberrant structures of fecal bacterial community in allergic infants profiled by 16S rRNA gene pyrosequencing[J]. FEMS Immunol Med Microbiol, 2011, 63(3): 397-406. PMID: 22029688. DOI: 10.1111/j.1574-695X.2011.00872.x.
14 Chen CC, Chen KJ, Kong MS, et al. Alterations in the gut microbiotas of children with food sensitization in early life[J]. Pediatr Allergy Immunol, 2016, 27(3): 254-262. PMID: 26663491. DOI: 10.1111/pai.12522.
15 Hua X, Goedert JJ, Pu A, et al. Allergy associations with the adult fecal microbiota: analysis of the American gut project[J]. EBioMedicine, 2016, 3: 172-179. PMID: 26870828. PMCID: PMC4739432. DOI: 10.1016/j.ebiom.2015.11.038.
16 Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. PMID: 21205640. PMCID: PMC3969237. DOI: 10.1126/science.1198469.
17 Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3[J]. Immunity, 2005, 22(3): 329-341. PMID: 15780990. DOI: 10.1016/j.immuni.2005.01.016.
18 Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses[J]. Nat Immunol, 2011, 12(1): 5-9. PMID: 21169997. DOI: 10.1038/ni0111-5.
19 Sampson HA, O'Mahony L, Burks AW, et al. Mechanisms of food allergy[J]. J Allergy Clin Immunol, 2018, 141(1): 11-19. PMID: 29307410. DOI: 10.1016/j.jaci.2017.11.005.
20 Chu C, Moriyama S, Li Z, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183[J]. Cell Rep, 2018, 23(13): 3750-3758. PMID: 29949760. PMCID: PMC6209103. DOI: 10.1016/j.celrep.2018.05.099.
21 Sandin A, Br?b?ck L, Norin E, et al. Faecal short chain fatty acid pattern and allergy in early childhood[J]. Acta Paediatr, 2009, 98(5): 823-827. PMID: 19173682. DOI: 10.1111/j.1651-2227.2008.01215.x.
22 Berni Canani R, Sangwan N, Stefka AT, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants[J]. ISME J, 2016, 10(3): 742-750. PMID: 26394008. PMCID: PMC4817673. DOI: 10.1038/ismej.2015.151.
23 王玉蕾, 郑跃杰. 肠道中短链脂肪酸与过敏性疾病关系的研究进展[J]. 中国微生态学杂志, 2013, 25(1): 104-108. DOI: 10.13381/j.cnki.cjm.2013.01.032.
24 尹迪, 胡勇. 粪便短链脂肪酸与新生儿消化系统疾病之间的关系[J]. 国际儿科学杂志, 2020, 47(3): 177-179. DOI: 10.3760/cma.j.issn.1673-4408.2020.03.007.
PDF(1385 KB)

Accesses

Citation

Detail

Sections
Recommended

/