Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas: a multicenter clinical research protocol
ZE Bi1, GAO Jin2, ZHAO Xiao-Fen2, LI Yang-Fang2, ZHANG Tie-Song3, LIU Xiao-Mei3, MAO Hui4, QIN Ming-Cai5, ZHANG Yi6, YANG Yong-Li7, HE Chun-Ye8, ZHAO Yan9, DU Kun2, LIU Lin2, ZHOU Wen-Hao1,10
. Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201101, China .Department of Neonatology, Kunming Children's Hospital/National Clinical Key Specialty, Kunming 650000, China
Abstract Further evidence is needed to explore the impact of high-altitude environments on the neurologic function of neonates. Non-invasive techniques such as cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography can provide data on cerebral oxygenation and brain electrical activity. This study will conduct multiple cerebral near-infrared spectroscopy and amplitude-integrated electroencephalography monitoring sessions at various time points within the first 3 days postpartum for healthy full-term neonates at different altitudes. The obtained data on cerebral oxygenation and brain electrical activity will be compared between different altitudes, and corresponding reference ranges will be established. The study involves 6 participating centers in the Chinese High Altitude Neonatal Medicine Alliance, with altitude gradients divided into 4 categories: 800 m, 1 900 m, 2 400 m, and 3 500 m, with an anticipated sample size of 170 neonates per altitude gradient. This multicenter prospective cohort study aims to provide evidence supporting the impact of high-altitude environments on early brain function and metabolism in neonates.
Corresponding Authors:
Du K, Email: dukun@etyy.cn
E-mail: dukun@etyy.cn
Cite this article:
ZE Bi,GAO Jin,ZHAO Xiao-Fen et al. Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas: a multicenter clinical research protocol[J]. CJCP, 2024, 26(4): 403-409.
ZE Bi,GAO Jin,ZHAO Xiao-Fen et al. Cerebral oxygen metabolism and brain electrical activity of healthy full-term neonates in high-altitude areas: a multicenter clinical research protocol[J]. CJCP, 2024, 26(4): 403-409.
Hoiland RL, Howe CA, Coombs GB, et al. Ventilatory and cerebrovascular regulation and integration at high-altitude[J]. Clin Auton Res, 2018, 28(4): 423-435. PMID: 29574504. DOI: 10.1007/s10286-018-0522-2.
Bender DE, Auer C, Baran J, et al. Assessment of infant and early childhood development in a periurban Bolivian population[J]. Int J Rehabil Res, 1994, 17(1): 75-81. PMID: 7525498. DOI: 10.1097/00004356-199403000-00009.
Virués-Ortega J, Bucks R, Kirkham FJ, et al. Changing patterns of neuropsychological functioning in children living at high altitude above and below 4000 m: a report from the bolivian children living at altitude (BoCLA) study[J]. Dev Sci, 2011, 14(5): 1185-1193. PMID: 21884333. DOI: 10.1111/j.1467-7687.2011.01064.x.
Rimoldi SF, Rexhaj E, Duplain H, et al. Acute and chronic altitude-induced cognitive dysfunction in children and adolescents[J]. J Pediatr, 2016, 169: 238-243. PMID: 26541425. DOI: 10.1016/j.jpeds.2015.10.009.
Hunter CL, Oei JL, Suzuki K, et al. Patterns of use of near-infrared spectroscopy in neonatal intensive care units: international usage survey[J]. Acta Paediatr, 2018, 107(7): 1198-1204. PMID: 29430749. DOI: 10.1111/apa.14271.
Weeke LC, Dix LML, Groenendaal F, et al. Severe hypercapnia causes reversible depression of aEEG background activity in neonates: an observational study[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(5): F383-F388. PMID: 28130246. DOI: 10.1136/archdischild-2016-311770.
Meder U, Cseko AJ, Szakacs L, et al. Longitudinal analysis of amplitude-integrated electroencephalography for outcome prediction in hypoxic-ischemic encephalopathy[J]. J Pediatr, 2022, 246: 19-25.e5. PMID: 35430248. DOI: 10.1016/j.jpeds.2022.04.013.
Pichler G, Binder C, Avian A, et al. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth[J]. J Pediatr, 2013, 163(6): 1558-1563. PMID: 23972642. DOI: 10.1016/j.jpeds.2013.07.007.
Li Y, Ze B, Zhang T, et al. Oxygen saturation ranges for healthy newborns within 2 h at altitudes between 847 and 4,360 m: a prospective cohort study[J]. Neonatology, 2023, 120(1): 111-117. PMID: 36463855. DOI: 10.1159/000527266.
Crocker ME, Hossen S, Goodman D, et al. Effects of high altitude on respiratory rate and oxygen saturation reference values in healthy infants and children younger than 2 years in four countries: a cross-sectional study[J]. Lancet Glob Health, 2020, 8(3): e362-e373. PMID: 32087173. PMCID: PMC7034060. DOI: 10.1016/S2214-109X(19)30543-1.
Guo F, Tang S, Guo T, et al. Revised threshold values for neonatal oxygen saturation at mild and moderate altitudes[J]. Acta Paediatr, 2020, 109(2): 321-326. PMID: 31393023. DOI: 10.1111/apa.14962.
Ze B, Liu L, Yang Jin GS, et al. Near-infrared spectroscopy monitoring of cerebral oxygenation and influencing factors in neonates from high-altitude areas[J]. Neonatology, 2021, 118(3): 348-353. PMID: 34107488. DOI: 10.1159/000514403.
Richardson C, Hogan AM, Bucks RS, et al. Neurophysiological evidence for cognitive and brain functional adaptation in adolescents living at high altitude[J]. Clin Neurophysiol, 2011, 122(9): 1726-1734. PMID: 21377415. DOI: 10.1016/j.clinph.2011.02.001.
31 West JB. High Life: A History of High-Altitude Physiology and Medicine[M]. New York: Springer New York, 1998.
Homan RW, Herman J, Purdy P. Cerebral location of international 10-20 system electrode placement[J]. Electroencephalogr Clin Neurophysiol, 1987, 66(4): 376-382. PMID: 2435517. DOI: 10.1016/0013-4694(87)90206-9.
35 O' Toole JM, Boylan GB. NEURAL: quantitative features for newborn EEG using Matlab[EB/OL]. (2017-04-19)[2023-5-19]. https://arxiv.org/abs/1704.05694.
Dong X, Kong Y, Xu Y, et al. Development and validation of Auto-Neo-electroencephalography (EEG) to estimate brain age and predict report conclusion for electroencephalography monitoring data in neonatal intensive care units[J]. Ann Transl Med, 2021, 9(16): 1290. PMID: 34532427. PMCID: PMC8422089. DOI: 10.21037/atm-21-1564.
Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy[J]. Can J Appl Physiol, 2004, 29(4): 463-487. PMID: 15328595. DOI: 10.1139/h04-031.
Jopling J, Henry E, Wiedmeier SE, et al. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system[J]. Pediatrics, 2009, 123(2): e333-e337. PMID: 19171584. DOI: 10.1542/peds.2008-2654.
Bao XL, Yu RJ, Li ZS, et al. Twenty-item behavioral neurological assessment for normal newborns in 12 cities of China[J]. Chin Med J (Engl), 1991, 104(9): 742-746. PMID: 1935355.
Chen YJ, Liu C, Huang LL, et al. First-trimester blood concentrations of drinking water trihalomethanes and neonatal neurobehavioral development in a Chinese birth cohort[J]. J Hazard Mater, 2019, 362: 451-457. PMID: 30265976. DOI: 10.1016/j.jhazmat.2018.09.040.
Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood[J]. Stat Med, 1992, 11(10): 1305-1319. PMID: 1518992. DOI: 10.1002/sim.4780111005.
LI Shu-Juan, HU Li-Yuan, ZHANG Rong, YANG Lin, XI Li, LIU Fang, CAO Yun, ZHOU Wen-Hao, CHENG Guo-Qiang. Acute heart failure in a neonate[J]. CJCP, 2024, 26(3): 321-324.
[6]
Guideline Development Group of Clinical Practice Guidelines for Meropenem Therapy in Neonatal Sepsis; PekingUniversity Third Hospital; Editorial Department of Chinese Journal of Contemporary Pediatric. Clinical practice guidelines for meropenem therapy in neonatal sepsis (2024)[J]. CJCP, 2024, 26(2): 107-117.