Predictive indicators and risk model construction for coronary artery lesions in Kawasaki disease children over 5 years old
ZHANG Huayong, ZHANG Yong
Department of Cardiology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology/Wuhan Maternal and Child Healthcare Hospital, Wuhan 430016
Abstract Objective To study predictive indicators for coronary artery lesions (CAL) and construct a risk prediction model for CAL in Kawasaki disease (KD) children over 5 years old. Methods A retrospective analysis of KD children over 5 years old at Wuhan Children's Hospital of Tongji Medical College of Huazhong University of Science and Technology from January 2018 to January 2023 was conducted. Among them, 47 cases were complicated with CAL, and 178 cases were not. Multivariate logistic regression analysis was used to explore predictive indicators for CAL in KD children over 5 years old and construct a risk prediction model. The receiver operating characteristic curve was used to evaluate the effectiveness of the prediction model. Finally, the Framingham risk scoring method was used to quantify the predictive indicators, calculate the contribution of each indicator to the prediction of CAL in KD children over 5 years old, and construct a risk prediction scoring model. Results The multivariate logistic regression analysis showed that the duration of fever before the initial intravenous immunoglobulin (IVIG) treatment (OR=1.374, 95%CI: 1.117-1.689), levels of hypersensitive C-reactive protein (hs-CRP; OR=1.008, 95%CI: 1.001-1.015), and serum ferritin levels (OR=1.002, 95%CI: 1.001-1.003) were predictive indicators for CAL in KD children over 5 years old. The optimal cutoff values for predicting CAL were: duration of fever before initial IVIG treatment of 6.5 days (AUC=0.654, 95%CI: 0.565-0.744), hs-CRP of 110.50 mg/L (AUC=0.686, 95%CI: 0.597-0.774), and ferritin of 313.62 mg/L (AUC=0.724, 95%CI: 0.642-0.805). According to the Framingham risk scoring method, the low, medium, and high-risk states of CAL occurrence were defined as probabilities of <10%, 10%-20%, and >20%, respectively, with corresponding scores of 0-4 points, 5-6 points, and ≥7 points. Conclusions In KD children over 5 years old, those with a longer duration of fever before initial IVIG treatment, higher levels of hs-CRP, or elevated serum ferritin levels are more likely to develop CAL.
ZHANG Huayong,ZHANG Yong. Predictive indicators and risk model construction for coronary artery lesions in Kawasaki disease children over 5 years old[J]. CJCP, 2024, 26(5): 461-468.
ZHANG Huayong,ZHANG Yong. Predictive indicators and risk model construction for coronary artery lesions in Kawasaki disease children over 5 years old[J]. CJCP, 2024, 26(5): 461-468.
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. PMID: 28356445. DOI: 10.1161/CIR.0000000000000484.
Miyata K, Miura M, Kaneko T, et al. Evaluation of a Kawasaki disease risk model for predicting coronary artery aneurysms in a Japanese population: an analysis of post RAISE[J]. J Pediatr, 2021, 237: 96-101.e3. PMID: 34147499. DOI: 10.1016/j.jpeds.2021.06.022.
Friedman KG, Gauvreau K, Hamaoka-Okamoto A, et al. Coronary artery aneurysms in Kawasaki disease: risk factors for progressive disease and adverse cardiac events in the US population[J]. J Am Heart Assoc, 2016, 5(9): e003289. PMID: 27633390. PMCID: PMC5079009. DOI: 10.1161/JAHA.116.003289.
Ae R, Makino N, Kosami K, et al. Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: the nationwide survey in Japan, 2017-2018[J]. J Pediatr, 2020, 225: 23-29.e2. PMID: 32454114. DOI: 10.1016/j.jpeds.2020.05.034.
Mat Bah MN, Alias EY, Razak H, et al. Epidemiology, clinical characteristics, and immediate outcome of Kawasaki disease: a population-based study from a tropical country[J]. Eur J Pediatr, 2021, 180(8): 2599-2606. PMID: 34086103. DOI: 10.1007/s00431-021-04135-7.
Masuda H, Ae R, Koshimizu TA, et al. Serum sodium level associated with coronary artery lesions in patients with Kawasaki disease[J]. Clin Rheumatol, 2022, 41(1): 137-145. PMID: 34363547. DOI: 10.1007/s10067-021-05881-7.
Li J, Li DE, Hu M, et al. Red blood cell distribution width and tumor necrosis factor-α for the early prediction of coronary artery lesion in Kawasaki disease: a retrospective study[J]. Eur J Pediatr, 2022, 181(3): 903-909. PMID: 34494160. DOI: 10.1007/s00431-021-04252-3.
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature[J]. JAMA, 2017, 318(14): 1377-1384. PMID: 29049590. DOI: 10.1001/jama.2017.12126.
Tulloh RMR, Mayon-White R, Harnden A, et al. Kawasaki disease: a prospective population survey in the UK and Ireland from 2013 to 2015[J]. Arch Dis Child, 2019, 104(7): 640-646. PMID: 30104394. DOI: 10.1136/archdischild-2018-315087.
Watanabe Y, Ikeda H, Watanabe T. Differences in the clinical characteristics of Kawasaki disease between older and younger children (2015-2019): a single-center, retrospective study[J]. J Pediatr, 2023, 253: 266-269. PMID: 36208665. DOI: 10.1016/j.jpeds.2022.09.056.
Son MBF, Gauvreau K, Tremoulet AH, et al. Risk model development and validation for prediction of coronary artery aneurysms in Kawasaki disease in a north American population[J]. J Am Heart Assoc, 2019, 8(11): e011319. PMID: 31130036. PMCID: PMC6585355. DOI: 10.1161/JAHA.118.011319.
Wen H, Hun M, Zhao M, et al. Serum ferritin as a crucial biomarker in the diagnosis and prognosis of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease: a systematic review and meta-analysis[J]. Front Med (Lausanne), 2022, 9: 941739. PMID: 36035423. PMCID: PMC9399505. DOI: 10.3389/fmed.2022.941739.
Mitani Y, Sawada H, Hayakawa H, et al. Elevated levels of high-sensitivity C-reactive protein and serum amyloid-A late after Kawasaki disease: association between inflammation and late coronary sequelae in Kawasaki disease[J]. Circulation, 2005, 111(1): 38-43. PMID: 15611368. DOI: 10.1161/01.CIR.0000151311.38708.29.
Zhang HY, Xiao M, Zhou D, et al. Platelet and ferritin as early predictive factors for the development of macrophage activation syndrome in children with Kawasaki disease: a retrospective case-control study[J]. Front Pediatr, 2023, 11: 1088525. PMID: 36873655. PMCID: PMC9977190. DOI: 10.3389/fped.2023.1088525.
Kabeerdoss J, Pilania RK, Karkhele R, et al. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management[J]. Rheumatol Int, 2021, 41(1): 19-32. PMID: 33219837. PMCID: PMC7680080. DOI: 10.1007/s00296-020-04749-4.
Zhang QY, Xu BW, Du JB. Similarities and differences between multiple inflammatory syndrome in children associated with COVID-19 and Kawasaki disease: clinical presentations, diagnosis, and treatment[J]. World J Pediatr, 2021, 17(4): 335-340. PMID: 34013488. PMCID: PMC8134825. DOI: 10.1007/s12519-021-00435-y.