Abstract Pulmonary arterial hypertension (PAH) has a subtle onset, rapid progression, and high mortality rate. Imaging evaluation is an important diagnostic and follow-up method for PAH patients. Right ventricular (RV) strain evaluation can identify early changes in RV function and predict the prognosis. Currently, various methods such as tissue Doppler imaging, velocity vector imaging, speckle tracking imaging, and cardiac magnetic resonance imaging can be used to evaluate RV strain in PAH patients. This article aims to summarize the research progress of RV strain imaging evaluation technology in PAH patients, in order to provide a basis for clinical diagnosis and follow-up of PAH patients.
LIAO Man-Zhen,XIAO Yun-Bin. Research progress of right ventricular strain imaging evaluation technology in pulmonary arterial hypertension[J]. CJCP, 2024, 26(8): 887-892.
LIAO Man-Zhen,XIAO Yun-Bin. Research progress of right ventricular strain imaging evaluation technology in pulmonary arterial hypertension[J]. CJCP, 2024, 26(8): 887-892.
Vonk Noordegraaf A, Channick R, Cottreel E, et al. The REPAIR study: effects of macitentan on RV structure and function in pulmonary arterial hypertension[J]. JACC Cardiovasc Imaging, 2022, 15(2): 240-253. PMID: 34801462. DOI: 10.1016/j.jcmg.2021.07.027.
Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J, 2022, 43(38): 3618-3731. PMID: 36017548. DOI: 10.1093/eurheartj/ehac237.
Tello K, Dalmer A, Vanderpool R, et al. Cardiac magnetic resonance imaging-based right ventricular strain analysis for assessment of coupling and diastolic function in pulmonary hypertension[J]. JACC Cardiovasc Imaging, 2019, 12(11 Pt 1): 2155-2164. PMID: 30878422. DOI: 10.1016/j.jcmg.2018.12.032.
Cao J, Li S, Cui L, et al. Biventricular myocardial strain analysis in patients with pulmonary arterial hypertension using cardiac magnetic resonance tissue-tracking technology[J]. J Clin Med, 2022, 11(8): 2230. PMID: 35456323. PMCID: PMC9025312. DOI: 10.3390/jcm11082230.
Cittar M, Cipriani A, Merlo M, et al. Prognostic significance of feature-tracking right ventricular global longitudinal strain in non-ischemic dilated cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8: 765274. PMID: 34917664. PMCID: PMC8669391. DOI: 10.3389/fcvm.2021.765274.
Crossman LM, Rajaram P, Hart CM, et al. Evaluation of right ventricular strain in two separate cohorts with precapillary pulmonary hypertension[J]. Pulm Circ, 2023, 13(1): e12204. PMID: 36883189. PMCID: PMC9985931. DOI: 10.1002/pul2.12204.
Vang A, da Silva Gon?alves Bos D, Fernandez-Nicolas A, et al. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension[J]. JCI insight, 2021, 6(12): e142945. PMID: 33974567. PMCID: PMC8262476. DOI: 10.1172/jci.insight.142945.
Kocken JMM, da Costa Martins PA. Epigenetic regulation of pulmonary arterial hypertension-induced vascular and right ventricular remodeling: new opportunities?[J]. Int J Mol Sci, 2020, 21(23): 8901. PMID: 33255338. PMCID: PMC7727715. DOI: 10.3390/ijms21238901.
Wang Z, Patel JR, Schreier DA, et al. Organ-level right ventricular dysfunction with preserved frank-starling mechanism in a mouse model of pulmonary arterial hypertension[J]. J Appl Physiol (1985), 2018, 124(5): 1244-1253. PMID: 29369739. PMCID: PMC6008075. DOI: 10.1152/japplphysiol.00725.2017.
Richter MJ, Peters D, Ghofrani HA, et al. Evaluation and prognostic relevance of right ventricular-arterial coupling in pulmonary hypertension[J]. Am J Respir Crit Care Med, 2020, 201(1): 116-119. PMID: 31539478. DOI: 10.1164/rccm.201906-1195LE.
Singh I, Oliveira RKF, Heerdt PM, et al. Sex-related differences in dynamic right ventricular-pulmonary vascular coupling in heart failure with preserved ejection fraction[J]. Chest, 2021, 159(6): 2402-2416. PMID: 33388286. DOI: 10.1016/j.chest.2020.12.028.
Kremer N, Rako Z, Douschan P, et al. Unmasking right ventricular-arterial uncoupling during fluid challenge in pulmonary hypertension[J]. J Heart Lung Transplant, 2022, 41(3): 345-355. PMID: 34972609. DOI: 10.1016/j.healun.2021.11.019.
Hsu S, Simpson CE, Houston BA, et al. Multi-beat right ventricular-arterial coupling predicts clinical worsening in pulmonary arterial hypertension[J]. J Am Heart Assoc, 2020, 9(10): e016031. PMID: 32384024. PMCID: PMC7660856. DOI: 10.1161/JAHA.119.016031.
Rako ZA, Yogeswaran A, Lakatos BK, et al. Clinical and functional relevance of right ventricular contraction patterns in pulmonary hypertension[J]. J Heart Lung Transplant, 2023, 42(11): 1518-1528. PMID: 37451352. DOI: 10.1016/j.healun.2023.07.004.
Caivano D, Rishniw M, Birettoni F, et al. Transverse right ventricle strain and strain rate assessed by 2-dimensional speckle tracking echocardiography in dogs with pulmonary hypertension[J]. Vet Sci, 2020, 7(1): 19. PMID: 32046130. PMCID: PMC7157588. DOI: 10.3390/vetsci7010019.
Li X, Shi K, Yang ZG, et al. Assessing right ventricular deformation in hypertrophic cardiomyopathy patients with preserved right ventricular ejection fraction: a 3.0-T cardiovascular magnetic resonance study[J]. Sci Rep, 2020, 10(1): 1967. PMID: 32029853. PMCID: PMC7004999. DOI: 10.1038/s41598-020-58775-0.
Leng S, Tan RS, Guo J, et al. Cardiovascular magnetic resonance-assessed fast global longitudinal strain parameters add diagnostic and prognostic insights in right ventricular volume and pressure loading disease conditions[J]. J Cardiovasc Magn Reson, 2021, 23(1): 38. PMID: 33789701. PMCID: PMC8015087. DOI: 10.1186/s12968-021-00724-5.
Li Z, Liang Y, Cheng S, et al. Evaluation of right ventricular myocardial strain in pulmonary arterial hypertension associated with atrial septal defect by cardiac magnetic resonance feature tracking[J]. Int J Cardiovasc Imaging, 2022, 38(9): 2035-2045. PMID: 37726610. DOI: 10.1007/s10554-022-02591-2.
Li Y, Wang T, Haines P, et al. Prognostic value of right ventricular two-dimensional and three-dimensional speckle-tracking strain in pulmonary arterial hypertension: superiority of longitudinal strain over circumferential and radial strain[J]. J Am Soc Echocardiogr, 2020, 33(8): 985-994.e1. PMID: 32532643. DOI: 10.1016/j.echo.2020.03.015.
You XD, Pu ZX, Peng XJ, et al. Tissue Doppler imaging study of right ventricular myocardial systolic activation in subjects with pulmonary arterial hypertension[J]. Chin Med J (Engl), 2007, 120(13): 1172-1175. PMID: 17637247.
Meng H, Chandrasekaran K, Villarraga HR, et al. Right and left ventricular interaction in pulmonary hypertension: insight from velocity vector imaging[J]. Echocardiography, 2019, 36(5): 877-887. PMID: 30985965. DOI: 10.1111/echo.14328.
Badagliacca R, Pezzuto B, Papa S, et al. Right ventricular strain curve morphology and outcome in idiopathic pulmonary arterial hypertension[J]. JACC Cardiovasc Imaging, 2021, 14(1): 162-172. PMID: 33129726. DOI: 10.1016/j.jcmg.2020.08.017.
Liu Q, Hu Y, Chen W, et al. Evaluation of right ventricular longitudinal strain in pediatric patients with pulmonary hypertension by two-dimensional speckle-tracking echocardiography[J]. Front Pediatr, 2023, 11: 1189373. PMID: 37780047. PMCID: PMC10540637. DOI: 10.3389/fped.2023.1189373.
Jone PN, Duchateau N, Pan Z, et al. Right ventricular area strain from 3-dimensional echocardiography: mechanistic insight of right ventricular dysfunction in pediatric pulmonary hypertension[J]. J Heart Lung Transplant, 2021, 40(2): 138-148. PMID: 33268039. DOI: 10.1016/j.healun.2020.11.005.
Lin ACW, Seale H, Hamilton-Craig C, et al. Quantification of biventricular strain and assessment of ventriculo-ventricular interaction in pulmonary arterial hypertension using exercise cardiac magnetic resonance imaging and myocardial feature tracking[J]. J Magn Reson Imaging, 2019, 49(5): 1427-1436. PMID: 30353959. DOI: 10.1002/jmri.26517.
Song J, Chen Y, Cui Y, et al. Evaluation and comparison of quantitative right ventricular strain assessment by cardiac magnetic resonance in pulmonary hypertension using feature tracking and deformable registration algorithms[J]. Acad Radiol, 2021, 28(10): e306-e313. PMID: 32624401. DOI: 10.1016/j.acra.2020.06.015.
Padervinskien? L, Krivickien? A, Hoppenot D, et al. Prognostic value of left ventricular function and mechanics in pulmonary hypertension: a pilot cardiovascular magnetic resonance feature tracking study[J]. Medicina (Kaunas), 2019, 55(3): 73. PMID: 30897834. PMCID: PMC6473343. DOI: 10.3390/medicina55030073.
Lindholm A, Hesselstrand R, R?degran G, et al. Decreased biventricular longitudinal strain in patients with systemic sclerosis is mainly caused by pulmonary hypertension and not by systemic sclerosis per se[J]. Clin Physiol Funct Imaging, 2019, 39(3): 215-225. PMID: 30597705. PMCID: PMC6850088. DOI: 10.1111/cpf.12561.
Kallifatidis A, Mouratoglou SA, Giannakoulas G, et al. Myocardial deformation assessment in patients with precapillary pulmonary hypertension: a cardiac magnetic resonance study[J]. Diagn Interv Imaging, 2021, 102(3): 153-161. PMID: 32917553. DOI: 10.1016/j.diii.2020.08.001.
Wessels JN, Mouratoglou SA, van Wezenbeek J, et al. Right atrial function is associated with right venticular diastolic stiffness: RA-RV interaction in pulmonary arterial hypertension[J]. Eur Respir J, 2022, 59(6): 2101454. PMID: 34764180. PMCID: PMC9218241. DOI: 10.1183/13993003.01454-2021.
Lamacie MM, Thavendiranathan P, Hanneman K, et al. Quantification of global myocardial function by cine MRI deformable registration-based analysis: comparison with MR feature tracking and speckle-tracking echocardiography[J]. Eur Radiol, 2017, 27(4): 1404-1415. PMID: 27491873. DOI: 10.1007/s00330-016-4514-0.
Takakado M, Kido T, Ogawa R, et al. Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T[J]. Jpn J Radiol, 2023, 41(2): 142-152. PMID: 36227459. PMCID: PMC9889435. DOI: 10.1007/s11604-022-01344-4.