Clinical practice guidelines for the diagnosis and treatment of anemia of prematurity (2025)
Neonatal Clinical Practice Guidelines Expert Committee of the Cross-Strait Medical and Health Exchange Association; Neonatal Evidence-Based Medicine Group of the Commission of Neonatal Medicine of the Cross-Strait Medical and Health Exchange Association; Editorial Office of the Chinese Journal of Contemporary Pediatrics
Abstract Anemia of prematurity (AOP) is a multifactorial condition associated with congenital iron deficiency, low erythropoietin levels, a short lifespan of red blood cells, and iatrogenic blood loss. AOP is a common complication in premature infants that can adversely affect growth, development, and long-term neurocognitive outcomes. To standardize the diagnosis and treatment of AOP, the Neonatal Clinical Practice Guidelines Expert Committee and the Neonatal Evidence-Based Medicine Group of the Commission of Neonatal Medicine of the Cross-Strait Medical and Health Exchange Association, along with the Editorial Office of the Chinese Journal of Contemporary Pediatrics, have developed the "Clinical practice guidelines for the diagnosis and treatment of anemia of prematurity (2025)", based on the World Health Organization's handbook for guideline development and the formulation/revision principles of Chinese clinical practice guidelines. This guideline addresses eight clinical issues related to AOP, including risk factors, early identification, etiological diagnosis, diagnostic criteria, early prevention, transfusion therapy, strategies to improve prognosis, and post-discharge follow-up. It presents 29 recommendations formed from current evidence and expert consensus, aiming to provide guidance and decision-making support for healthcare professionals in the diagnosis and treatment of AOP.
Corresponding Authors:
Cai C caicheng2004@163.com
E-mail: caicheng2004@163.com
Cite this article:
Neonatal Clinical Practice Guidelines Expert Committee of the Cross-Strait Medical and Health Exchange Association,Neonatal Evidence-Based Medicine Group of the Commission of Neonatal Medicine of the Cross-Strait Medical and Health Exchange Association,Editorial Office of the C. Clinical practice guidelines for the diagnosis and treatment of anemia of prematurity (2025)[J]. CJCP, 2025, 27(1): 1-17.
Neonatal Clinical Practice Guidelines Expert Committee of the Cross-Strait Medical and Health Exchange Association,Neonatal Evidence-Based Medicine Group of the Commission of Neonatal Medicine of the Cross-Strait Medical and Health Exchange Association,Editorial Office of the C. Clinical practice guidelines for the diagnosis and treatment of anemia of prematurity (2025)[J]. CJCP, 2025, 27(1): 1-17.
Saito-Benz M, Flanagan P, Berry MJ. Management of anaemia in pre-term infants[J]. Br J Haematol, 2020, 188(3): 354-366. PMID: 31588563. DOI: 10.1111/bjh.16233.
Kalteren WS, Verhagen EA, Mintzer JP, et al. Anemia and red blood cell transfusions, cerebral oxygenation, brain injury and development, and neurodevelopmental outcome in preterm infants: a systematic review[J]. Front Pediatr, 2021, 9: 644462. PMID: 33718309. PMCID: PMC7952449. DOI: 10.3389/fped.2021.644462.
5 World Health Organization. WHO Handbook for Guideline Development, 2nd Edition[EB/OL]. (2014-12-18)[2023-07-01]. https://www.who.int/publications/i/item/9789241548960.
Chen Y, Yang K, Maru?ic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement[J]. Ann Intern Med, 2017, 166(2): 128-132. PMID: 27893062. DOI: 10.7326/M16-1565.
Guyatt GH, Alonso-Coello P, Schünemann HJ, et al. Guideline panels should seldom make good practice statements: guidance from the GRADE working group[J]. J Clin Epidemiol, 2016, 80: 3-7. PMID: 27452192. DOI: 10.1016/j.jclinepi.2016.07.006.
Counsilman CE, Heeger LE, Tan R, et al. Iatrogenic blood loss in extreme preterm infants due to frequent laboratory tests and procedures[J]. J Matern Fetal Neonatal Med, 2021, 34(16): 2660-2665. PMID: 31588840. DOI: 10.1080/14767058.2019.1670800.
Rocha G, Pereira S, Antunes-Sarmento J, et al. Early anemia and neonatal morbidity in extremely low birth-weight preterm infants[J]. J Matern Fetal Neonatal Med, 2021, 34(22): 3697-3703. PMID: 31736385. DOI: 10.1080/14767058.2019.1689948.
Finn D, Dorrian A, Sheehy J, et al. Emergency uncross-matched blood transfusions in a tertiary neonatal unit[J]. Acta Paediatr, 2017, 106(2): 218-222. PMID: 27783412. DOI: 10.1111/apa.13646.
Bahr TM, DuPont TL, Christensen TR, et al. Evaluating emergency-release blood transfusion of newborn infants at the intermountain healthcare hospitals[J]. Transfusion, 2019, 59(10): 3113-3119. PMID: 31479169. DOI: 10.1111/trf.15495.
Mintzer JP, Parvez B, La Gamma EF. Regional tissue oxygen extraction and severity of anemia in very low birth weight neonates: a pilot NIRS analysis[J]. Am J Perinatol, 2018, 35(14): 1411-1418. PMID: 29906796. DOI: 10.1055/s-0038-1660458.
Whitehead HV, Vesoulis ZA, Maheshwari A, et al. Anemia of prematurity and cerebral near-infrared spectroscopy: should transfusion thresholds in preterm infants be revised?[J]. J Perinatol, 2018, 38(8): 1022-1029. PMID: 29740185. PMCID: PMC6136959. DOI: 10.1038/s41372-018-0120-0.
El-Dib M, Aly S, Govindan R, et al. Brain maturity and variation of oxygen extraction in premature infants[J]. Am J Perinatol, 2016, 33(8): 814-820. PMID: 26906179. DOI: 10.1055/s-0036-1572542.
Yogev-Lifshitz M, Leibovitch L, Schushan-Eisen I, et al. Indication of mild hemolytic reaction among preterm infants with ABO incompatibility[J]. Pediatr Blood Cancer, 2016, 63(6): 1050-1053. PMID: 26841084. DOI: 10.1002/pbc.25926.
Li S, He Z, Luo Y, et al. Distribution of maternal red cell antibodies and the risk of severe alloimmune haemolytic disease of the foetus in a Chinese population: a cohort study on prenatal management[J]. BMC Pregnancy Childbirth, 2020, 20(1): 539. PMID: 32938441. PMCID: PMC7493166. DOI: 10.1186/s12884-020-03235-w.
Singh Y, Tissot C, Fraga MV, et al. International evidence-based guidelines on point of care ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC)[J]. Crit Care, 2020, 24(1): 65. PMID: 32093763. PMCID: PMC7041196. DOI: 10.1186/s13054-020-2787-9.
Mattiello V, Schmugge M, Hengartner H, et al. Diagnosis and management of iron deficiency in children with or without anemia: consensus recommendations of the SPOG pediatric hematology working group[J]. Eur J Pediatr, 2020, 179(4): 527-545. PMID: 32020331. DOI: 10.1007/s00431-020-03597-5.
Domell?f M. Meeting the iron needs of low and very low birth weight infants[J]. Ann Nutr Metab, 2017, 71 (Suppl 3): 16-23. PMID: 29268255. DOI: 10.1159/000480741.
Jopling J, Henry E, Wiedmeier SE, et al. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system[J]. Pediatrics, 2009, 123(2): e333-e337. PMID: 19171584. DOI: 10.1542/peds.2008-2654.
Rabe H, Gyte GM, Díaz-Rossello JL, et al. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes[J]. Cochrane Database Syst Rev, 2019, 9(9): CD003248. PMID: 31529790. PMCID: PMC6748404. DOI: 10.1002/14651858.CD003248.pub4.
American College of Obstetricians and Gynecologists' Committee on Obstetric Practice. Delayed umbilical cord clamping after birth: ACOG committee opinion, number 814[J]. Obstet Gynecol, 2020, 136(6): e100-e106. PMID: 33214530. DOI: 10.1097/AOG.0000000000004167.
Seidler AL, Aberoumand M, Hunter KE, et al. Deferred cord clamping, cord milking, and immediate cord clamping at preterm birth: a systematic review and individual participant data meta-analysis[J]. Lancet, 2023, 402(10418): 2209-2222. PMID: 37977169. DOI: 10.1016/S0140-6736(23)02468-6.
Pegoraro V, Urbinati D, Visser GHA, et al. Hemolytic disease of the fetus and newborn due to Rh(D) incompatibility: a preventable disease that still produces significant morbidity and mortality in children[J]. PLoS One, 2020, 15(7): e0235807. PMID: 32687543. PMCID: PMC7371205. DOI: 10.1371/journal.pone.0235807.
Embleton ND, Jennifer Moltu S, Lapillonne A, et al. Enteral nutrition in preterm infants (2022): a position paper from the ESPGHAN committee on nutrition and invited experts[J]. J Pediatr Gastroenterol Nutr, 2023, 76(2): 248-268. PMID: 36705703. DOI: 10.1097/MPG.0000000000003642.
Baker RD, Greer FR, Committee on Nutrition American Academy of Pediatrics. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age)[J]. Pediatrics, 2010, 126(5): 1040-1050. PMID: 20923825. DOI: 10.1542/peds.2010-2576.
Manapurath RM, Gadapani Pathak B, Sinha B, et al. Enteral ironsupplementationinpreterm or low birth weight infants: a systematic review and meta-analysis[J]. Pediatrics, 2022, 150(Suppl 1): e2022057092I. PMID: 35921671. DOI: 10.1542/peds.2022-057092I.
Power G, Morrison L, Kulkarni K, et al. Non breast-milk-fed very preterm infants are at increased risk of iron deficiency at 4-6-months corrected age: a retrospective population-based cohort study[J]. Nutrients, 2024, 16(3): 407. PMID: 38337690. PMCID: PMC10857446. DOI: 10.3390/nu16030407.
Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition[J]. J Pediatr Gastroenterol Nutr, 2017, 64(1): 119-132. PMID: 28027215. DOI: 10.1097/MPG.0000000000001454.
Snetselaar LG, de Jesus JM, DeSilva DM, et al. Dietary guidelines for americans, 2020-2025: understanding the scientific process, guidelines, and key recommendations[J]. Nutr Today, 2021, 56(6): 287-295. PMID: 34987271. PMCID: PMC8713704. DOI: 10.1097/NT.0000000000000512.
60 WHO. WHO Guideline for complementary feeding of infants and young children6-23 months of age[EB/OL]. (2023-10-16)[2023-12-02]. https://www.who.int/publications/i/item/9789240081864.
61 Dietary Guidelines Advisory Committee. Scientific report of the 2020 dietary guidelines advisory committee[EB/OL]. [2023-12-02]. https://downloads.regulations.gov/FDA-2016-D-2335-1173/content.pdf.
Franz AR, Engel C, Bassler D, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial[J]. JAMA, 2020, 324(6): 560-570. PMID: 32780138. PMCID: PMC7420159. DOI: 10.1001/jama.2020.10690.
Andersen CC, Stark MJ, Kirpalani HM. Thresholds for red blood cell transfusion in preterm infants: evidence to practice[J]. Clin Perinatol, 2023, 50(4): 763-774. PMID: 37866846. DOI: 10.1016/j.clp.2023.07.001.
Fu X, Zhao X, Weng A, et al. Comparative efficacy and safety of restrictive versus liberal transfusion thresholds in anemic preterm infants: a meta-analysis of 12 randomized controlled trials[J]. Ann Hematol, 2023, 102(2): 283-297. PMID: 36542102. PMCID: PMC9889497. DOI: 10.1007/s00277-022-05072-7.
New HV, Berryman J, Bolton-Maggs PH, et al. Guidelines on transfusion for fetuses, neonates and older children[J]. Br J Haematol, 2016, 175(5): 784-828. PMID: 27861734. DOI: 10.1111/bjh.14233.
Fergusson DA, Hébert P, Hogan DL, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial[J]. JAMA, 2012, 308(14): 1443-1451. PMID: 23045213. DOI: 10.1001/2012.jama.11953.
Carson JL, Guyatt G, Heddle NM, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage[J]. JAMA, 2016, 316(19): 2025-2035. PMID: 27732721. DOI: 10.1001/jama.2016.9185.
Kemper AR, Newman TB, Slaughter JL, et al. Clinical practice guideline revision: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation[J]. Pediatrics, 2022, 150(3): e2022058859. PMID: 35927462. DOI: 10.1542/peds.2022-058859.
Maisels MJ, Watchko JF, Bhutani VK, et al. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation[J]. J Perinatol, 2012, 32(9): 660-664. PMID: 22678141. DOI: 10.1038/jp.2012.71.
van Imhoff DE, Dijk PH, Hulzebos CV, et al. Uniform treatment thresholds for hyperbilirubinemia in preterm infants: background and synopsis of a national guideline[J]. Early Hum Dev, 2011, 87(8): 521-525. PMID: 21621933. DOI: 10.1016/j.earlhumdev.2011.04.004.
Wan-Huen P, Bateman D, Shapiro DM, et al. Packed red blood cell transfusion is an independent risk factor for necrotizing enterocolitis in premature infants[J]. J Perinatol, 2013, 33(10): 786-790. PMID: 23702619. DOI: 10.1038/jp.2013.60.
Balegar KK, Stark MJ, Briggs N, et al. Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants[J]. J Pediatr, 2014, 164(3): 475-480.e1. PMID: 24360993. DOI: 10.1016/j.jpeds.2013.10.041.
Lundgren P, Athikarisamy SE, Patole S, et al. Duration of anaemia during the first week of life is an independent risk factor for retinopathy of prematurity[J]. Acta Paediatr, 2018, 107(5): 759-766. PMID: 29243312. PMCID: PMC5902413. DOI: 10.1111/apa.14187.
Steinmacher J, Pohlandt F, Bode H, et al. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: neurocognitive development at 5.3 years' corrected age[J]. Pediatrics, 2007, 120(3): 538-546. PMID: 17766527. DOI: 10.1542/peds.2007-0495.
Fontana C, Raffaeli G, Pesenti N, et al. Red blood cell transfusions in preterm newborns and neurodevelopmental outcomes at 2 and 5 years of age[J]. Blood Transfus, 2022, 20(1): 40-49. PMID: 33263525. PMCID: PMC8796841. DOI: 10.2450/2020.0207-20.